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Application of Kohonen maps to kinetic analysis of human gait

Silvia Elizabeth Rodrigo*, Claudia Noemí Lescano, Rodolfo Horacio Rodrigo

Abstract In recent years the use of artificial neural networks for classification and analysis of kinematic and kinetic 
characteristics of human locomotion has greatly increased. This happens in an attempt to overcome the 
limitations of traditional dynamic analysis and to find new clinical indicators for interpreting quick and 
objectively the large amount of information obtained in a gait lab. One of the most widely used neural networks 
for human gait analysis is the self-organizing or Kohonen map, based on unsupervised learning without prior 
definition of the formed natural groups. Among the advantages of using this type of neural network is the data 
dimensionality reduction, with minimal loss of information content, and the grouping of them in function of 
their similarities. Taking into account this, in this work an application case of a Kohonen map for clustering 
of locomotion kinetic characteristics in normal and Parkinson’s disease individuals is presented. The results 
indicate that the groups identified by the map are consistent with the classification carried out by experts 
in function of traditional gait dynamic analysis, showing the potential of this technique for distinguishing 
between a population of individuals with normal gait and with gait disorders of different etiology.
Keywords Human gait, Parkinson´s disease, Artificial neural network, Clustering.

Aplicação de mapas de Kohonen à análise cinética da marcha humana

Resumo Nos últimos anos, tem aumentado significativamente o uso de redes neurais artificiais para a classificação 
e análise cinemática e cinética da marcha humana, em uma tentativa de superar as limitações da análise 
dinâmica tradicional e de encontrar novos indicadores clínicos para interpretar, de forma rápida e objetiva, 
a grande quantidade de informação obtida em laboratórios de marcha humana. Uma das redes neurais mais 
utilizadas para análise de marcha é o mapa de Kohonen ou mapa auto-organizado, baseado em aprendizado 
não supervisionado, sem uma definição prévia de grupos naturais que se formam. O uso deste tipo de rede 
neural tem mostrado benefícios significativos associados com a redução da dimensionalidade dos dados com 
mínima perda de conteúdo de informação e com o agrupamento de dados de acordo com suas semelhanças. 
Neste contexto, este trabalho apresenta um caso de aplicação de um mapa de Kohonen como classificador 
das características cinéticas da locomoção em indivíduos normais e com doença de Parkinson. Os resultados 
indicam que os grupos identificados no mapa são consistentes com a classificação feita por especialistas com 
base em análise dinâmica tradicional, que mostra o potencial desta técnica para diferenciar populações de 
indivíduos com marcha normal e de indivíduos com distúrbios da marcha de etiologia diferente.
Palavras-chave Marcha humana, Doença de Parkinson, Rede neural artificial, Classificação.
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Introduction
Human gait is a complex spatiotemporal process 
involving structures and functions of the 
neuromusculoskeletal system of human body (Sánchez 
Lacuesta et al., 1999; Winter, 2005). Although this 
process is of individual character, the similarities 
between individuals are such that a typical pattern 
of normal human gait can be found. In addition, this 
pattern experiences modifications due to the influence 
of diverse factors and particularly under certain 
pathological conditions, where the gait efficiency 
diminishes with the consequent increase of energy 
expenditure that this implies (Lehmann and De Lateur, 
1999).

Among these pathological conditions, those from 
neuromuscular etiology such as Parkinson disease (PD), 
a neurodegenerative disorder of the basal ganglia, 
are included. Parkinsonian gait is characterized by 
small shuffling steps, muscle rigidity at limbs and 
neck, variability in stride length and walking speed 
during free ambulation and postural instability, with 
the risk of falls and loss of functional independence 
in the most severe cases (Davie, 2008; Lehmann and 
De Lateur, 1999).

Through computer analysis realized in gait 
laboratories it is possible to obtain kinematic, kinetic 
and electromyographic variables that characterize 
normal and pathological gait patterns (Medved, 2001). 
Proper processing and analysis of such locomotor 
information is a key factor to obtain an accurate 
diagnosis of the considered gait pathology and to plan 
its treatment (Battistella et al., 2009; Rodrigo, 2008; 
Rodrigo et al., 2008). However, these requirements 
imply spending many hours analyzing the collected 
raw data by trained personnel. Moreover, the difficulty 
to find new ways of linking information in complex 
locomotion disorders such as PD through traditionally 
used algorithms hinders the task of defining more 
precisely the underlying cause of this disorder and its 
effect on locomotor activity (Simon, 2004).

A possible solution to this problematic is to 
apply clustering techniques based on artificial neural 
network (ANN), which helps to quickly discriminate 
between normal and pathological gaits. In this regard, 
numerous studies show the high probability of success 
in achieving this classification from different types of 
supervised and unsupervised ANN (Barton and Lees, 
1997; Barton et al., 2006; Chau, 2001; Köhle and 
Merkl, 1996). Specifically, the aim of this paper is to 
show the feasibility of using an unsupervised ANN, 
as is the case of self-organizing maps or Kohonen 
maps, SOM (Kohonen, 2001), for distinction between 
normal and parkinsonian gait patterns.

For this purpose in the next section first, the ANN 
input variables or descriptors used to differentiate 
normal and Parkinson’s disease inter-subject gait 
patterns are defined. Second, the structure of SOM map 
and the procedure used to achieve the classification is 
described. Then, the results obtained are shown and 
finally, a brief discussion precedes the conclusions 
of the work.

Materials and Methods

Human gait database
To demonstrate the suitability of the unsupervised ANN, 
a database corresponding to 60 normal individuals 
(mean 63.3 years, range 37 to 86 years, 47% men) and 
60 patients with idiopathic Parkinson’s disease (mean 
68.8, range 45 to 84 years, 62% of men) was used 
as classifier of inter-subject gait variability. Among 
other variables, this database contains demographic 
information such as the weight of the analyzed subject 
and a commonly used system, such as the Hoehn 
& Yahr scale, for describing how the symptoms 
of Parkinson’s disease progress (Hoehn and Yahr, 
1967). According to the original scale, the natural 
progression of PD is developed through 5 stages of 
ever increasing severity. Since then, stage 0 has been 
added (corresponding to individuals with normal 
gait), and stages 1.5 and 2.5 have been proposed, 
resulting in a modified scale as is indicated in Table 1. 
In contrast to normal cases, pathological cases here 
considered correspond respectively to 40 and 20 cases 
of stages 2 and 2.5 based on the modified Hoehn and 
Yahr scale. These stages are related to patients that 
show an altered gait with bilateral symptoms but 
without loss of body balance (Hoehn and Yahr, 1967; 
PhysioBank, 2009).

As well, the database includes kinetic data for 
both feet that were acquired during a gait test of about 

Table 1. Classification of severity level of PD according to modified 
Hoehn and Yahr scale (Hoehn and Yarh, 1967).

Stage Signs y symptoms
0 No signs of disease.
1 Unilateral symptoms only.

1.5 Unilateral and axial involvement.
2 Bilateral symptoms. No impairment of balance.

2.5 Mild bilateral disease with recovery on pull test.

3 Balance impairment. Mild to moderate disease. 
Physically independent.

4 Severe disability, but still able to walk or stand 
unassisted.

5 Needing a wheelchair or bedridden unless 
assisted.
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2 minutes on level ground at normal self-selected 
cadence for each test participant, which has been 
digitalized and recorded at 100 samples per second 
(PhysioBank, 2009). Underneath each foot there 
are 8 sensors that measure force (in Newtons) as a 
function of time and together represent the plantar 
pressures distribution for every foot. The database 
also contain two signals that reflect the sum of the 
8 sensor outputs for each foot, corresponding to the 
vertical component of the ground reaction force (GRF) 
for both feet (Infotronic, 2005). Besides, to minimize 
the effects of start-up and to match the length of the 
vector data for all samples the first 5 seconds of data 
were discarded, opting finally for a vector length of 
5600. Figure 1 displays the vertical component of GRF 
during a gait cycle (GC) for both feet, obtained for 
a subject with normal gait and a Parkinson’s patient 
from the mentioned database.

Definition of variables
The choice of ANN input variables is based on typical 
inter-subject differences observed in the size and shape 
of the curve representing the temporal variation of 
the vertical component of GRF, depending on the 
condition of analyzed subject. Indeed, as displayed 
on Figure 1a for a case of normal gait, such curve has 
two peaks. The first one occurs during heel strike with 
the ground at the beginning of stance phase, while the 
second peak is caused by the upward force exerted 
by ground during toe off at the end of the same phase 
(Sánchez Lacuesta et al., 1999). Besides, the stance 
and swing phases pass between 0 - 60 and 60 - 100% 
GC, respectively.

In contrast, the curve shown in Figure 1b for the 
case of Parkinson’s disease patient exhibits some 
times, a reduction in the peaks height of GRF), in 
similar form to what occur in elderly individuals. 
Also of note is the variation of taken time for stance 

and swing phases for PD patients with respect to 
normal individuals (in this case 70 and 30% of GC, 
respectively), so as to ensure as far as possible, the 
body stability during locomotion. Later stages of this 
disease are described by a gait with small shuffling 
steps and a single narrow peak of vertical component 
of GRF, thus reducing significantly the time required 
for swing phase (Koozekanani, 1987).

The observed differences in Figure 1 between 
kinetic patterns for normal and parkinsonian gaits 
are consistent with the general conclusion stated by 
Crowther (2008, p. 357)

[...] a stable movement pattern is a behavioral state 
that is reproducible and independent of others and 
equates to low variability.

Higher gait variability can be caused by 
injury, disease, or aging, indicating that the related 
neuromuscular system is less stable. Particularly 
in PD patients, different researches have shown 
increased gait variability, both intra- or within-subject 
and inter- or between-subject, which have been 
linked to an increased risk of falls in such patients 
(Hausdorff et al., 1998).

According to these observations and in order to 
select the most appropriate input variables for fast 
differentiation of normal and parkinsonian gait patterns 
by ANN, distinct parameters were employed. Such 
parameters characterize the inter-subject gait variability 
throughout the considered temporal signal. Among 
them, were utilized: the mean standard deviation of 
GRF signal during consecutive stance phases, its 
maximum value (which defines the mean peak GRF 
intensity for successive stance periods), the mean 
coefficient of variation (CV) of GRF, and the mean 
sum of GRF over successive stance phases (as an 
approximation of the mean value of the area under 
the curve through these consecutive phases).

Figure 1. Vertical component of ground reaction force (GRF) for both feet during a gait cycle (GC). a) normal gait; b) parkinsonian gait. For 
normal gait stance phase (0-60% GC) begins at left heel strike (HS) and ends with toe off (TO). Swing phase takes between 60 and 100% 
GC. Notice how these percentages vary for parkinsonian gait.

a b
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As an example of inter-subject variability for GRF 
signal during successive stance phases, the variability 
exhibited by the mean coefficient of variation of GRF 
for the right and left legs is depicted in Figure 2. 
These curves correspond respectively to the 60 normal 
(on the left) and the 60 pathological (on the right) 
considered cases.

As well, in Figure 3 the inter-subject variability 
of mean sum of GRF through consecutive stance 
phases for the right and left legs is represented for 
the same normal (on the left) and pathological (on the 
right) cases.

As can be visualized both in Figures 2 and 3 on 
the left, the inter-subject variability values for normal 
gait exhibit not only a lower magnitude but also a 
minor temporal variability with respect to parkinsonian 
gait (Figures 2 and 3 on the right). This shows the 
feasibility of utilizing these indexes as descriptors of 
inter-subject gait patterns through ANN.

Taking into account these antecedents and after 
several trials, the following descriptors of the vertical 
component of GRF characteristics for both feet were 
finally selected:

• Mean coefficient of variation (CV) of GRF 
during consecutive stance phases to describe 
the inter-subject variability in GRF magnitude 
and waveform throughout analyzed gait cycles. 
It is determined in each sample and for left 
and right feet, as the ratio between the mean 
standard deviation and the mean value of GRF 
for each trial. After that, the average value of 
CV of GRF is determined for all successive 
stance phases of the analyzed gait cycles.

• Mean sum of GRF during successive stance 
phases, as an approximation of area under 
the GRF curve over these consecutive phases 
of analyzed gait cycles. It is calculated in 
each sample and for left and right feet, as 
the mean value of the sum of GRF for each 
trial, then averaging the achieved values for 
all consecutive stance phases of the temporal 
signal considered.

As well, such variables were normalized by 
their respective maximum values, so that they have 
the same rank, in this case between 0 and 1, and the 
same variance, equal to 1. Finally, the ANN input 

a

b

c

d

Figure 2. Inter-subject variability evaluated by the mean coefficient of variation (CV) of GRF during consecutive stance phases of gait 
cycle, corresponding to 60 normal subject and 60 parkinsonian patients analyzed. a) left foot for normal individuals; b) right foot for normal 
individuals; c) left foot for parkinsonian patients; d) right foot for parkinsonian. In each figure, the visualized values represent the mean 
coefficient of variation of ground reaction force during successive stance phases (mean CV(GRF)) and its corresponding standard deviation (std).
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data are composed by normal and pathological cases 
randomly chosen.

Type and structure of the artificial neural 
network
The ANN chosen to classify the gait data between 
normal and pathological is the type called 
self-organizing map (SOM) or Kohonen map, a 
type of ANN algorithm whose aim is to discover and 
display the underlying structure of the data entered 
in it, usually of high dimensionality. A SOM map 
is defined by an array of neurons (connected by a 
neighborhood relationship that defines the structure 
of the network) of a single layer, which represents 
filters or processors selectively tuned by input data 
simultaneously presented to all network nodes. 
Consequently, the neurons transform the input signals 
in a probability distribution encoded by positions on 
a map structured according to its topology (Haykin, 
2005; Kohonen, 2001; Merelo, 2004).

From a training process based on unsupervised 
competitive learning, the SOM group the input data 
(of n dimension) in network nodes (each of which also 
has dimension n) in terms of their similarity, projecting 
them on a smaller map output in where the input data 
characteristics are distributed in a gradual and order 
form (Kohonen, 2001). Thus, SOMs allow for two 

tasks on the input data: to reduce their dimensionality 
and to visualize similarities. In this case and bearing 
in mind that the objective of this work only aims to 
assess the usefulness of ANN as differentiating normal 
and parkinsonian gaits, a 2 × 2 structure was chosen.

Generation, training and visualization of the 
artificial neural network

For SOM implementation a Matlab® Toolbox was 
utilized through newsom function, which generates 
an ANN defined in the following form (Vesanto et al., 
1999):

[ ]( )  =net newsom P, d1, d2 , tfcn, dfcn, steps, in  (1)

being: P: matrix R × Q, with R equal to input 
variable number and Q, sample number; [d1,d2]: neural 
network size (2 × 2); tfcn: neural network topology 
function, arranged in hexagonal, grid or randomly 
form (hextop, gridtop, or randtop respectively; 
‘hextop’ was chosen); dfcn: distance function from 
a particular neuron to its neighbors, Euclidian, by 
steps, Manhattan or box types (dist, linkdist, mandist 
y boxdist, respectively, ‘linkdist’ was chosen); steps: 
steps from the neighborhood to reduce its size to 1 
(default = 100); in: neighborhood initial size (=3).

a

b
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d

Figure 3. Inter-subject variability evaluated by the mean sum of GRF during consecutive stance phases of gait cycle, corresponding to 60 
normal subject and 60 parkinsonian patients analyzed. a) left foot for normal individuals; b) right foot for normal individuals; c) left foot for 
parkinsonian patients; d) right foot for parkinsonian. In each figure, the visualized values represent the mean sum of ground reaction force 
during successive stance phases (mean sum(GRF)) and its corresponding standard deviation (std).
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After defining the ANN (with the values 
specified for the topology and distance function), 
the arrangements for the input data (an array of 
120 samples of 4 elements each) were established. 
The number of samples for training, validation and 
testing was distributed in 90, 15 and 15, equivalent 
to 75, 12.5 and 12.5% of samples, respectively.

For training the Matlab® train function based on 
the function NET.trainFcn and training parameters 
NET.trainParam was used, whose syntax is as follows:

[ ] ( )  =net, tr train NET, X, T  (2)

where: NET: generated SOM map; X: input vector 
(in this case, 90 samples of 4 elements each), T: target 
vectors (in this case, do not apply), net: new ANN 
generated from training, tr: training register (number 
of epochs or iterations (=500) and ANN performance 
(quantization error of 0.01).

According to this function, the training algorithm 
move the SOM weight vectors (initially selected 
through Matlab® rands function, which generates 
random values between –1 and 1) to extend then 
through the cloud of input data, so the map is organized 
in such a way that neighboring neurons in the ANN gain 
similar weight vectors. For this the Matlab® iterative 
training algorithm (by default batch) was used in two 
stages. In this process the total data set is presented to 
the network and the new weight vector is a weighted 
average of the input data vectors. In the first stage, 
which aims to organize the map, a high learning 
rate equal to 0.09 and a radius 3 neighborhood were 
employed, while in the second one, of fine tuning, these 
values were set respectively at 0.02 and 1, finishing 
the training (after 800 iterations in 12 seconds) with 
a stable arrangement of the input patterns. For a more 
detailed description about this issue the references 
cited can be consulted (Haykin, 2005; Kohonen, 2001; 
Merelo, 2004; Vesanto et al., 1999).

Finally, after the training phase, the network 
produces an output suitable to all input samples through 
sim Matlab® function, whose syntax is:

( )  ,=Y sim NET P  (3)

where: NET: represents the trained ANN, P: set 
of input samples; Y: ANN output.

Results
Figure 4 displays the clusters obtained for both types 
of gait data the SOM with the set of selected input 
variables, that is, the mean coefficient of variation and 
mean sum of GRF during consecutive stance phases 
of the analyzed gait signal. In this figure, the small 

hexagons represent the neurons, while the lines within 
the large hexagons connect neighboring neurons. 
In addition, the colors of the regions containing 
these lines indicate the distances between neurons, 
representing the dark and light colors, large and small 
distances respectively. As well, the dark segments 
dividing the two-dimensional map show that the 
Kohonen map grouped the input data into two distinct 
regions, corresponding to individuals with normal 
and parkinsonian gaits.

Furthermore, in Figure 5 the distribution of 
samples between normal and pathological cases is 
shown. From the analysis of these results it can be 
inferred that the SOM map operates as an appropriate 
classificatory taking into account that was able to 
recognize respectively, 72.09% (corresponding to 
31 of 43 normal cases) and 70.21% (in this case, 
33 of 47 parkinsonian cases) of normal and pathological 
gait patterns. Other evaluators of SOM performance 

Figure 4. Results of SOM neural network corresponding to 
neighborhood defined by input vector samples.

Figure 5. Classification of normal and parkinsonian gait pattern 
samples for the mean coefficient of variation (CV) of GRF and the 
mean sum of GRF as input variables to SOM.
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are the sensibility and specificity indexes, being 
their values equal to 0.721 and 0.702, respectively. 
These indexes were calculated from a number of 31 
true negatives and 12 false positive from a total of 
43 normal samples, and 33 true positives and 14 false 
negative from 47 pathological samples.

In contrast with the selected variables for this 
SOM application, using as input variables the mean 
of maximum value and the mean standard deviation 
of GRF during consecutive stance phases, the results 
shown in Figure 6 are generated. In this case, the 
sensibility and specificity indexes were equal to 
0.6744 and 0.6809, respectively, obtained from a 
number of 29 true negatives and 9 false positive from 
a total number of 43 normal samples, and 32 true 
positives and 20 false negative from 47 parkinsonian 
samples.

On the other hand, Figure 7 indicates the weight 
adjustment of input variables made by the SOM map 
in function of the spatial distribution of the samples 
presented during training (lighter small dots). In 
addition, the dark spots represent the neurons in the 
SOM map. Also, there exists a correlation between dark 
and light areas shown in Figure 4 and the distances 
between neurons in  7.

Finally, Figure 8 shows the weight map for each 
element of the input vector (in this case, two elements 
for each leg) that characterizes the influence degree 
of each input on each network neuron. Dark colors 
are indicative of greater weight and thus, greater 
influence in defining the clusters. Furthermore, if the 
connection patterns of two inputs are very similar, it 
can be assumed that the inputs are highly correlated. 
Such is the case of weights for inputs 1 and 2 and 
for the inputs 3 and 4, representing respectively, the 
mean CV of GRF and the mean sum of GRF for left 
and right feet.

Discussion
In the literature there are previous works oriented to 
classification of kinematic and kinetic gait patterns 
through ANN. About this, the work by Chau (2001) 
provides an excellent review on the subject. As 
application examples, an automatic classification of 
patients into groups with a SOM map was obtained 
using the vertical component of GRF under both feet, 
with results agreeing with the clinical classification of 
the patients (Köhle and Merkl, 1996). Other research 
group utilized a supervised ANN to differentiate 
gait patterns from hip and knee joint angles in the 
sagittal plane (Barton and Lee, 1997). The same 
group used then a SOM map to reduce the complexity 
of three-dimensional joint kinematic and kinetic 

data, projecting them in a two-dimensional map 
(Barton et al., 2006). Also, in a previous work a 
classification of normal and parkinsonian gait based on 
a multilayer perceptron ANN was achieved from the 
power spectral density of GRF for the left leg as input 
variables (Battistella et al., 2009). These examples 

Figure 6. Classification of normal and parkinsonian gait pattern 
samples for the mean maximum value of GRF and the mean standard 
deviation of GRF as input variables to SOM.

Figure 7. Results of SOM neural network corresponding to weight 
adjustment using the mean coefficient of variation (CV) of GRF and 
the mean sum of GRF as input variable.
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show the applicability of ANN as an objective tool 
that may enhance decision making.

In the present work, a series of test were performed 
with different input variables for the SOM. In contrast 
with the results obtained in Figure 6 for the mean 
maximum value of GRF and the mean standard 
deviation of GRF, the use of the mean CV of GRF 
and the mean sum of GRF over successive stance 
phases were the best option to obtain a relative good 
classification between normal and parkinsonian 
gaits (Figure 5). In the first case, the sensibility 
and specificity indexes were respectively equal to 
0.6744 and 0.6809, meanwhile in the second one (that 
is, for the combination of SOM input variables used 
in this work), the values of sensibility and specificity 
indexes were 0.721 and 0.702, respectively. Such 
results demostrate for this application, the generality 
of the obtained solution.

If the classification of gait patterns using a 
multilayer perceptron and a SOM ANNs are compared, 
better results are achieved in the first case. However, 
it is noteworthy that the use of a multilayer perceptron 
is based on supervised learning, unlike SOM, where 

no target is included to contribute to the differentiation 
of input patterns.

From the point of view of the causative 
factors of gait variability, different hypothesis 
have been postulated. One of them proposes that 
it is due to structural complexity of the human 
neuromusculoskeletal system, what determines 
an even more complex functional system that is 
inherently variable, both within and among individuals 
(Bates et al., 2004).

In addition, according to Bernstein’s theory, 
effective organization of the multiple degrees of 
freedom of the neuromusculoskeletal system is a 
requisite for healthy functional and steady locomotion 
patterns (Bernstein, 1967), manifested by small 
fluctuations of gait parameters during free ambulation.

Nevertheless, in certain neuromuscular pathologies 
such as PD, such fluctuations are increased due to 
variability in stride length and walking speed during 
ambulation at self-selected cadence, determining an 
inability to maintain a steady walk with small stride-
to-stride fluctuations (Hausdorff et al., 2000, 2003; 
Hausdorff, 2005). Other research works also show the 

Figure 8. Influence of the input variables weights (mean coefficient of variation (CV) of GRF and the mean sum of GRF) on neural network 
neurons for clustering definition.

Rev. Bras. Eng. Biom., v. 28, n. 3, p. 217-226, set. 2012
Braz. J. Biom. Eng., 28(3), 217-226, Sept. 2012224



Self-organizing maps applied to human gait

importance of the integrity of cerebellum and basal 
ganglia structures, typically affected in PD patients, 
in adequately regulating force and timing control in 
motor activities such as locomotion (Davie, 2008; 
James, 2004; Lehmann and De Lateur, 1999).

Such considerations could explain the greater 
inter-subject variability observed in Figures 2 and 3 
o the right for PD patients with respect to normal 
gait, on the left. Besides, consistent with the results of 
Figure 5, this differential gait attribute is reflected in 
the specificity index of 0.702, equivalent to a 70.21% 
of well classified pathological samples.

With respect to the clinical relevance of these 
issues, such changes in variability of gait parameters 
for PD patients could be a predictor of the level of 
deterioration of brain structures that regulates force 
and timing control for an efficient gait. In this sense, 
it is proposed here to estimate a reference range of 
normal gait that can be used then to compare the degree 
of gait impairment in the considered pathological 
condition. In this way, it can be quickly viewed in a 
first approximation, how the pathological condition 
deviates from normality.

Furthermore, greater inter-subject variability in PD 
patients would indicate an increased level of postural 
instability. As it is visualized in Table 1, the modified 
Hoehn and Yahr scale is based on the two-fold concept 
that the severity of overall parkinsonian dysfunction 
relates to bilateral motor involvement and the degree 
of gait balance.

In relation to the differential motor characteristics 
of these two categories of PD patients here considered 
(40 and 20 cases with Hoehn and Yahr index equal to 
2 and 2.5, respectively) and according to Table 1, while 
the first has bilateral symptoms without impairment of 
balance, the second one exhibits mild bilateral disease 
with recovery on pull test. This last test evaluates 
postural instability, which is the relative ability or 
inability to recover from falling. In the pull test, the 
individual being tested is asked to maintain his balance 
while an examiner pulls him backward. As it is indicated 
in Table 1, PD patients with a Hoehn and Yahr index 
value of 2.5 are not affected by postural instability and 
for this reason, the observed differences can not be 
attributed to an increased risk of falls in such patients.

Summing up and according to these examples and 
observations, the results here obtained reveal the high 
probability of success in achieving differentiation 
between normal and parkinsonian gait patterns. In this 
sense, the specificity of the utilized descriptors played 
a key role not only in reducing the dimensionality of 
the input data, but also in finding similarities between 
both types of analyzed populations.

Conclusion
In this work a SOM map was used for clustering of 
normal and parkinsonian gait patterns. In the context 
of kinetic data analysis, the SOM can be regarded as 
a software tool that reduces the amount of data with 
minimal loss of information content. After the learning 
phase, input values can be classified as belonging to 
specific clusters, and in general hidden structures of 
the input data set can be detected.

From the biomedical point of view, the current 
application of SOM map indicates that the vertical 
component of GRF contains relevant information 
for differentiating quickly and objectively normal 
and pathological gait patterns. This shows that the 
utilized combination of input variables and the type 
of ANN is feasible for clustering of gait patterns. 
An additional advantage of using ANN is to obtain 
the classification automatically, without defining a 
biomechanical model of the human body to process the 
data. As well, the clinical relevance of this application 
of ANN is related with the fact that changes in gait 
variability with respect to normal gait, could be a 
predictor of the degree of ambulation impairment in 
the considered pathological condition.

Based on the obtained results, in future work it 
is expected to generate new descriptors to identify 
more accurately the mechanical and neurological 
behaviors of human body during parkinsonian gait, 
both intra- and inter-subject. Such descriptors could 
be parameters to identify the marked body imbalance 
or the increased variability between steps, typically 
seen in patients with Parkinson’s disease.
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