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Unveiling the uncertainty principle in the QRS complex offset 
detection on high resolution electrocardiography

Olivassé Nasario-Junior, Paulo Roberto Benchimol-Barbosa, Jurandir Nadal*

Abstract The accuracy of high resolution electrocardiographic (HRECG) methods for stratifying the risk of malignant 
ventricular arrhythmia depends on the fidelity of QRS fiducial points detection. This study aims at examining 
the effect of acquisition and processing variables in HRECG on the variability of QRS complex offset (QRS 
offset) detection in simulated and biological signals, as well as investigating the factors related to the so called 
uncertainty principle applied to HRECG. Successive QRS offset locations were calculated in different signals 
configurations including HRECG data from patients with and without ventricular late potentials and simulated 
data using linear and exponential functions. The expected error in QRS offset detection was assessed as a 
function of: i) signal characteristics (Simulated or Biological); ii) Sampling Frequency (SF); iii) Residual 
Noise Level (RNL); iv) QRS maximum amplitudes. The uncertainty principle was related to HRECG and a 
given exponential signals, and increasing RNL up to 0.5 µV. SF and RNL are outstanding factors influencing 
QRS offset variability. Thus, HRECG related uncertainty principle is a deterministic phenomenon associated 
with both HRECG signal and mathematical formulation of the terminal decay of the QRS complex to the 
fusion with the ST segment.
Keywords High resolution electrocardiogram, Variability of QRS complex offset, Uncertainty principle.

Desvendando o princípio da incerteza na detecção do final do complexo 
QRS na eletrocardiografia de alta resolução

Resumo A precisão dos resultados dos exames de eletrocardiografia de alta resolução (ECGAR) para estratificação 
do desenvolvimento de arritmias ventriculares malignas depende da fidelidade na detecção dos pontos 
fiduciais do complexo QRS. O presente estudo tem o objetivo de avaliar o efeito das variáveis de aquisição 
e processamento do ECGAR sobre a variabilidade da detecção do ponto final do complexo QRS (QRS-fim) 
em sinais biológicos simulados e reais, bem como investigar o efeito de condições relacionadas ao assim 
formulado “princípio da incerteza da eletrocardiografia de alta resolução”. Detecções sucessivas do 
QRS-fim foram realizadas usando diferentes configurações de sinais simulados e de pacientes com e sem 
potenciais tardios ventriculares. Os sinais simulados empregaram funções lineares e exponenciais para 
mimetização da porção final do complexo QRS. O erro de detecção do QRS-fim esperado foi avaliado em 
função de: i) procedência dos sinais (simulado ou biológico); ii) frequência de amostragem (FA); iii) nível 
de ruído residual (NRR); iv) amplitude máxima do complexo QRS. A presença do princípio da incerteza 
relacionou-se ao padrão de decaimento exponencial e ao aumento progressivo da NRR, até 0,5 µV. FA e 
NRR têm impacto significativo na variabilidade do QRS-fim. Assim, o principio da incerteza da ECGAR é 
um fenômeno determinístico dependente da forma de onda relativa ao decaimento da região terminal do 
complexo QRS até a sua fusão com o segmento ST.
Palavras-chave Eletrocardiograma de alta resolução, Variabilidade do ponto final do complexo QRS, 

Princípio da incerteza.
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Introduction
The signal-averaged or high resolution electro-
cardiography (HRECG) is a non-invasive diagnostic 
tool employed to stratify individuals at risk for 
developing life threatening ventricular arrhythmias 
secondary to reentry mechanism, and accurate results 
have important clinical implications (Ikeda et al., 2007; 
Marcus et al., 2007). Its purpose is to identify the 
presence of ventricular late potentials (VLP) at 
the terminal region of the QRS complex and in the 
beginning of the ST segment, which are signals 
originated from abnormal ventricular activation 
over the damaged myocardium (Simson, 1981). 
Following the initial scientific interest generated 
by the method, expectations diminished over 
time due to significant variability in its predictive 
accuracy among different studies. However, during 
the past few years, its predictive value has been 
re-evaluated either alone or in conjunction with 
other stratification methods in several cardiac 
abnormalities (Lacroix et al., 1991; Madias, 2005; 
Grell et al., 2006; Benchimol-Barbosa, 2007; 
Ribeiro et al., 2008; Schoenenberger et al., 2008; 
Liew, 2010; Huebner et al., 2010; Marcus et al., 2010).

Currently, in HRECG, the standard assessment 
of the signal is based on time domain analysis 
(Simson, 1981; Breithard et al., 1991), and the success of 
the diagnostic evaluation depends on the correct signal 
alignment and identification of both onset and offset 
points of the QRS complex (Speranza et al., 1996). 
On the other hand, the morphology and the location 
of VLPs, as well as the parameters employed in signal 
acquisition and processing, even when standardized 
(Breithard et al., 1991), influence the precision and 
the accuracy of QRS complex end points (QRS 
offset) estimation. A residual variability in QRS 
duration in successively performed exams is, thus, 
observed in the same patient (Goldberger et al., 2000). 
Notwithstanding, the duration of the QRS complex 
is the most important index for the risk stratification 
of ventricular arrhythmia (Uijen et al., 1979; 
Korhonen et al., 2006; Marcus et al., 2010).

By averaging successive beats, it is possible to 
reduce the interference or noise whereas relevant signal 
waveforms are preserved, allowing the identification of 
VLPs (Benchimol-Barbosa, 2003; Laciar et al., 2003). 
It is noteworthy that detection algorithms of fiducial 
points in current practice are based on a threshold 
level detector, which is calculated from the signal-
averaged residual noise level (RNL) (Jane et al., 1991; 
Breithard et al., 1991). 

Two main theories explain the relationship between 
the RNL and the variability in the detection of the 

QRS offset, or the expected detection error (εexpected), 
in a threshold level detector system. The classic 
theory, proposed by Uijen et al. (1979) establishes 
that the variability of any point along the QRS 
complex, identified by a threshold detector level, 
will be directly proportional to RNL and inversely 
proportional to the first derivative at the detection 
point. On its turn, the uncertainty principle applied 
to HRECG (Goldberger et al., 2000) states that the 
lower RNL, the higher the variability (uncertainty) in 
the estimated QRS offset in successive independently 
processed HRECG signals.

Several studies have been carried out to investigate 
the effect of the RNL on the variability of measured 
indexes and/or the presence of VLP clinically 
relevant (Steinberg et al., 1989; Sager et al., 1991; 
Christiansen et al., 1996; Goldberger et al., 2000; 
Bragge et al., 2005; Frances, 2010). However, those 
studies are scarce in examining the relationship among 
acquisition protocol, signal-processing parameters and 
fiducial point variability in computationally simulated 
and human biological signals. Thus, the objective 
of the present study was twofold: i) to investigate 
the influence of signal acquisition and processing 
parameters of HRECG in the variability of the QRS 
offset in simulated and biological signals, and ii) to 
identify factors related to the uncertainty principle 
applied to HRECG.

Theoretical modeling of the uncertainty 
principle

Detection error theory

According to Uijen et al. (1979), in a threshold 
detector, the standard deviation (Detection Error) 
at a detection point t = t0 of a signal, in successive 
repetitions will be defined as follows.

Considering an ECG signal, defined as function 
s(t) immerse in ergodic additive noise r(t), with 
normal distribution of zero average and s2

r variance, 
the output signal, y(t), with a high SNR, can be written 
according to:

( ) ( ) ( )= +y t s t r t  (1)

A threshold level detector at a threshold λ will 
be employed for y(t) detection. At a given time tλ , 
λ crosses the QRS complex. Thus, it can be written 
that for a real QRS complex signal:

( ) ( )λ λλ = +s t r t  (2)

where, tλ represents the time at which the threshold 
level λ crosses the QRS complex.
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Because of the noise, the instant tλ will be a random 
variable, with average µ(tλ) and variance s2(tλ), and 
the threshold λ level can be re-written to consider 
the two first terms of the Taylor series expansion:

( ( )) ( ( ))
      ( ( )) [ ( ( )) ( ( ))]

λ λ

λ λ λ λ

λ ≅ µ + µ +
− µ ⋅ µ + µ′ ′

s t r t
t t s t r t  (3)

where s´(µ(tλ)) and r´(µ(tλ)) represent the first derivate 
of s(t) and r(t), respectively, at time µ(tλ).

Furthermore, in an ideal case, detection point at 
threshold level λ = s(µ(tλ)). By replacing λ = s(µ(tλ)) in 
the Equation 3 and making appropriate arrangements, 
λ is dropped from both sides of the equation, which 
changes into:

( ( ))( )
( ( )) ( ( ))

λ
λ λ

λ λ

µ≅ µ −
µ + µ′ ′

r tt t
s t r t  (4)

if SNR is high, r´(µ(tλ)) in the denominator can 
be dropped in relation to s´(µ(tλ)), what simplifies 
Equation 4 in:

( ( ))( )
( ( ))

λ
λ λ

λ

µ≅ µ −
µ′

r tt t
s t  (5)

where s’(µ(tλ)) is constant, r(µ(tλ)) is the noise value 
and µ(tλ) is average detection time, tλ. Now, obtaining 
the variance of variable tλ, s

2(tλ) in Equation 5, the 
result will be:

2
2

2( )
( ( ))λ

λ

ss ≅
µ′

rt
s t

 (6)

Thus, Equation 6 demonstrates that the variance of 
the detection point, s2(tλ), will be directly proportional 
to the baseline residual noise variance, s2

r.
Now, consider ƒ(t) as a function that represents 

the QRS complex decay at the terminal region. In 
classical QRS end point detectors, the threshold level, 
λ, is defined as multiple of the SD of the baseline 
noise (Breithard et al., 1991). By arbitrarily taking 
the detection threshold λ as three times the SD of 
the signal baseline noise (λ = 3.SD), the threshold 
at the QRS offset (to) will then correspond to f(to). 
Defining the detection error at to (εo) as the SD at to in 
successive independent detections procedures, which 
corresponds to the square root of s2(tλ) in Equation 6, 
that is εo = s(tλ), the behaviors of εo is analyzed below 
in three particular cases of f(t).

Linear case theory

At the QRS complex offset point, where f(to) = λ,

( ) ( )( )
−

= → = −
A N t df t Af t

N dt N

( )0
0because  1 1 , then:

2
 

→ = − ⋅ − 
 

f t
t N

( )
( )

λε = = ⋅o
o

o

f t Ndf t A
dt

 (7)

where A is the QRS complex maximum amplitude; 
N is QRS duration; to is time corresponding to the 
intersection of QRS complex end points by the 
threshold detector; f(to) is a function corresponding to 
the QRS complex end points at the threshold detection 
(λ = f(to)); and εo is the detection error. Therefore, 
in this case εo will be linear and directly related to 
the baseline noise level (λ = 3.SD), thus rejecting 
in Equation 7 the uncertainty principle postulation.

Exponential case theory

A general form of the exponential function ( )
−

=

pkt
pf t Ae  

was employed to simulate QRS complex offset, 
modified from Bragge et al. (2005). By taking at 
threshold level, f(to) = λ, it follows

1( )( )
− −

−= → = −

p pkt kt
pp pdf tf t Ae Akt e

dt

because  ln , then:
( )

 
→ = ⋅   

p
o

o

p At
k f t

1/

ln( )
( )
( ) ln( )

 ⋅ λ ε = =
⋅

λ

p

o
o

o

p A
f t k

df t Ap
dt

 (8)

where k is a decay constant.
Exponential Case p > 1, [p = 2, in Equation 8] – 

At the QRS complex offset point, where f(to) = λ,
2 2

2 2( )( )

2because  ln , then:
( )

− −
= → = −

 
→ = ⋅   

kt kt

p
o

o

df tf t Ae Akte
dt

At
k f t

( ) 1
( )

2 ln
ε = =

 ⋅ ⋅   λ

o
o

o

f t
df t Akdt

 (9)

similar to the observed in the linear case, fixed both 
signal amplitude (A) and constant decay (k), εo will be 
directly related to the baseline noise level (expressed 
as a function of the baseline noise level, λ = 3.SD), 
thus, rejecting the uncertainty principle in Equation 9.

Exponential Case [p = 1, in Equation 8] – At the 
QRS complex offset point, where f(to) = λ,

( )( )

1because  ln , then:
( )

− −= → = −

 
→ = ⋅   

kt kt

o
o

df tf t Ae Ake
dt

At
k f t

( ) 1
( )ε = =o

o
o

f t
df t k

dt
 (10)
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similar to the observed in the linear case, fixed both 
signal amplitude (A) and constant decay (k), εo will be 
invariant for any baseline noise level, thus, rejecting 
the uncertainty principle in Equation 10.

Exponential Case 0 < p < 1, [p = 0.5, in 
Equation 8] – At the QRS complex offset point, 
where f(to) = λ,

0.5 0.5

0.50.5 0.5

2

( )( )

0.5because  ln , then :
( )

− −−= → = −

  
→ = ⋅    

kt kt

o
o

df tf t Ae Akt e
dt

At
k f t

2

0.5 ln
( )
( )

 ⋅   λε = =o
o

o

A
f t

df t k
dt

 (11)

different from what was observed in p > 1 and 
p = 1 cases, fixed both signal amplitude (A) and 
constant decay (k), εo will be inversely related to the 
baseline noise level (λ = 3.SD), thus demonstrating 
the uncertainty principle in high resolution 
electrocardiography in Equation 11.

Methods
The simulated signals were generated from 
mathematical functions mimicking the terminal 
region of ventricular activation waveform, as follows 
(Figure 1): i) In perfect alignment and constant derivate, 
by a linear function (LIN), given by

( ) ( ) ;   0
−

⋅ = ≤ ≤
A N i

f i SF i N
N

 (12)

where A is the maximum amplitude, N represents 
duration from peak R-wave to QRS offset, i a discrete 
time in this interval, sampled at an appropriate 
arbitrarily defined sampling frequency, SF; and ii) 
In non-perfect alignments and variable derivates, by 
exponential functions (EXP), given by

( )
0.5− ⋅

⋅ =

pi
pf i SF Ae  (13)

Exponential functions were analyzed in three 
particular cases, for p (constant decay) equal to 0.5 
(EXP0.5), 1 (EXP1) and 2 (EXP2).

Each simulated QRS complex (linear and 
exponentials) was additionally implemented with five 
different maximum amplitudes A (0.01, 0.05, 0.1, 0.5 
and 1 mV). For appropriate comparison with human 
biological signals, such amplitudes were named in 
electric tension unit (V). Each signal configuration 
was sampled in different sampling frequencies 
(1, 2, 5 and 10 kHz) and added to different RNLs 
(0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 µV) that were 

within the standardized limits for clinical HRECG 
use (Breithard et al., 1991).

According to the theorem demonstrated by 
Uijen et al. (1979),

( )ε =
∆expected
RNL
f i  (14)

where ∆f(i) is the first derivative of f(i), f(i) ≡ f(i.SF) and 
εexpected (ε = detection error) was calculated according 
to the respective simulating function property.

The estimated εexpected shows, in the linear case, 
the QRS offset detection variability must exclusively 
depend on the RNL, considering the constant first 
derivate. In the exponential cases, estimated εexpected 
depends on RNL, maximum QRS amplitude and 
constant decay (p), which determines signal derivative 
at the detection point.

The human biological signals (BIO) were 
assessed in two different groups adjusted by 
age, gender and anthropometric indexes. Control 
group consisted of 18 healthy volunteers’ signals, 
age 52.1 ± 10.2 years (mean ± standard deviation), 
without documented heart disease and the experiment 
group (age 58.7 ± 12.9 years), comprising 18 subjects 
with past history of syncope of cardiac origin and 
documented sustained monomorphic ventricular 
tachycardia (SMVT Group), either spontaneous or 
induced in electrophysiology study. Subjects in both 
groups were in sinusal rhythm, and none presented 
complete bundle branch block. An informed consent 
was obtained from all subjects before participation.

The ECG signals were acquired after 10 min of 
supine rest. The HRECG signals were acquired using 
XYZ orthogonal bipolar Frank leads during 20 min, 
with three-channel electrocardiograph (Lynx 
Tecnologia, São Paulo, Brazil), with 10 GΩ input 
impedance, -120 dB/channel common mode rejection, 

Figure 1. Terminal QRS complex decay function simulation. Examples 
of signals simulating the terminal region of the activation waveform 
(QRS complex): a) Linear, b) Exponential (p = 1), c) Exponential 
(p = 2), d) Exponential (p = 0.5). See text for details.

a

b

c

d
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and analog band-pass filter from 1 to 300 Hz (2nd 
order Butterworth filter). Signals were sampled with a 
14 bit A/D converter at a sampling frequency of 1 kHz 
and stored in a personal computer. All patients were 
in sinus rhythm and resting comfortably in the supine 
position during acquisition. The skin was cleaned 
with slight abrasion, and adhered with Ag/AgCl 
electrodes (3M, USA).

Each lead was analyzed to exclude ectopic and 
excessive noisy beats (a beat rejection automatically 
eliminated the following beat). Using the X-lead as 
a reference, the system identified each beat, after 
a template generated and updated until the 10th 
consecutive normal accepted beat. To be considered 
compatible with the template, a given beat has to 
present a minimum correlation coefficient to 0.8. 
Each accepted beat was appropriately synchronized, 
according to an algorithm modified from Jane et al. 
(1991), and averaged after weighting with the inverse 
of the spectral power between 40-250 Hz and carried 
out until a noise below 0.2 µV.

Each lead was, then, bidirectionally filtered 
(Butterworth 4th order / 40-250 Hz band-pass) and 
gathered in the vector magnitude (Vm = (X2+Y2+Z2)1/2), 
in which were identified the QRS offsets 
(Simson, 1981).

In all BIO signals, RNL was set at similar levels 
implemented in simulated signals for assessing the 
effect on QRS offset detection. Digital data sampling 
was also adjusted to 2, 5 and 10 kHz, by cubic spline 
interpolation. All tested signals (Table 1) had the 
same duration, equal to 512 ms (Jane et al., 1991).

The maximal amplitudes of simulated signals 
were arbitrarily defined aiming at analyzing the 
detection algorithm in extreme situations of minimal 
(0.01, 0.05 and 0.1 mV) and maximal amplitude (0.5 
and 1 mV). Particularly, 0.1 and 0.5 mV amplitude 
were the ones that approached HRECG signals after 
processing and bi-directional filtering (maximal 
amplitude: Control Group: 0.30 ± 0.08 mV and SMVT 
Group: 0.31 ± 0.11 mV).

The RNL was implemented with a 
normally-distributed random number generation 
function. The verification of generated RNL was 
carried out by variance calculation in a 100 points 
window width located over the baseline. For each 
level, noises were statistically compared by the χ2 
test (α = 0.05).

The QRS offset variability was analyzed in each 
signal configuration (total configurations = 2576) that 
combined specific characteristics (Table 1). For each 
set of configurations, it was generated 5000 simulated 
signals and 500 biological signals. The algorithms for 
both simulation and identification of the ventricular 
activation were implemented in Matlab® version 6.5 
software (The MathWorks, Natick, USA).

The QRS offset values were stored in a vector 
for subsequent mean and standard deviation (SD) 
calculation. Those parameters were analyzed as a 
function of RNL in each signal configuration aiming at 
analyzing the QRS offset variability behavior according 
to presence of uncertainty principle (i.e., increasing 
for εexpected and decreasing for uncertainty principle). 

The uncertainty principle applied to HRECG 
establishes that the RNL is inversely proportional 
to the SD of the QRS offset location in a series of 
independent measures. A reciprocal relationship 
between QRS offset SD and RNL was arbitrarily 
defined by a general multiplicative equation:

= Dy Cx  (15)

where, x and y are reciprocal variables and C and D, 
appropriate coefficients. To properly estimate the 
coefficients, a linear transformation (natural logarithm) 
was carried out according to a minimum squared 
method. The data adjustment to the multiplicative 
model was assessed by the Pearson’s correlation 
coefficient (r). The following hypothesis (α = 0.05) 
were formulated to validate the presence of uncertainty 
principle: i) One-sided Student t-test applied to the 
Pearson’s correlation coefficient (r), taking as H0 
the absence of correlation (r = 0), ii) One-sided 

Table 1. Number of signal configurations and simulations. A = amplitude (maximum); SF = sampling frequency; RNL = residual noise level; 
Config. = Configurations (product of Type, A, SF and RNL); Simul. = Simulation; LIN = Linear; EXP1 = Exponential (p = 1); EXP2 = Exponential 
(p = 2); EXP0.5 = Exponential (p = 0.5); Control (18) = 18 subjects of Control group; SMVT (18) = 18 subjects of SMVT group.

Type A (mV) SF (kHz) RNL (µV) Config. Simul.

LIN (1) 5 4 7 140 5000
EXP1 (1) 5 4 7 140 5000
EXP2 (1) 5 4 7 140 5000
EXP0.5 (1) 5 4 7 140 5000
Control (18) 1 4 7 504 500
SMVT (18) 1 4 7 504 500

Total 1568 3304000
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Student t-test applied to mean angular coefficient 
(D), taking as H0 if D was null or positive (D ≥ 0). 
Angular coefficient was hypothesized to show normal 
distribution. Adjustment tests were carried out only in 
data sets where the null hypothesis was rejected in test 
(i) and rejected in test (ii), indicating the occurrence 
of uncertainty principle. In those data sets where 
tests (i) and (ii) showed different results association, 
uncertainty principle was rejected.

In order to test the homocedasticity among RNL 
classes, the respective variances (SD squared) were 
compared by Cochran’s test (α < 0.05). In case of 
rejected H0 a post-hoc Snedecor’s F-test was employed 
(α < 0.05) in the two-by-two comparison to identify 
those statistically different.

The SD values for each set of simulated signals 
were grouped according to the RNL (mean SD values 
of all amplitudes [mV] and sampling frequencies [kHz]) 
and referred as calculated detection error (εcalculated).

The numeric results are presented as: 
Mean ± Standard Error of the Mean (SEM).

Results
The mean value of εcalculated (for all sampling frequency) 
by RNL and respective SEM in different configurations 
(Table 1), as well as the respective εexpected values are 
presented in the Figure 2 for simulated signals. The 
statistics tests validate the presence of uncertainty 
principle for EXP0.5 and, the respectives p values 
(* < 0.05; # < 0.0001) identified those statistically 
different from the smallest εcalculated value.

For biological signals, similar analyses were 
grouped according to RNL for all SF; i) for each 
group (Control and SMVT), ii) including both groups 
of biologic signals (Figure 3).

The εcalculated for biologic signals were compared 
according to the sampling frequency and RNL 
(Figure 4), with the lower variability region (arrow) 
of the QRS offset detection for biologic is around the 
noise 0.5 µV and sampling frequency of 10 kHz. Note 
that the uncertainty principle hypothesis was rejected 
for the 1 kHz sequence.

Discussion
The uncertainty principle applied to HRECG establishes 
a reciprocal relationship between RNL and the QRS 
offset variability. Thus, the lower the RNL the higher 
will be QRS offset εcalculated in successive independent 
repetitions of the detection process, and vice-versa.

For the simulated signals, all estimated errors 
were similar to those calculated (Figure 2), and 
the outline characteristic for uncertainty principle 

Figure 2. Detection error analysis in simulated signals. Detection 
Error (ε) values of simulated signal by residual noise level (ε; 
mean ± SEM of all sampling frequencies): ( )εexpected , ( ) εcalculated, (⊥) 
SEM = standard error of the mean. LIN = Linear; EXP1 = Exponential 
(p = 1); EXP2 = Exponential (p = 2); EXP0.5 = Exponential (p = 0.5). 
(* = p < 0.05; # = p < 0.0001). See text for details.

Figure 3. Detection error analysis in human biological signals. 
εcalculated values of human biological signal by residual noise level (ε; 
mean ± SEM of all sampling frequencies): ( ) Control group εcalculated , 
( ) SMVT group εcalculated, ( ) εcalculated of all groups, (⊥) SEM = standard 
error of the mean. (# = p < 0.0001). See text for details.
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presence was observed only in the exponential case 
where p = 0.5 (EXP0.5). These findings indicate that 
the uncertainty principle was actually consistent 
with a deterministic characteristic of the signal, 
particularly in HRECG. Conversely, the uncertainty 
principle as mathematically determined points to a 
particular decay pattern of the terminal region of the 
QRS complex in real conditions, which was better 
represented by an exponential function in the present 
study (case p = 0.5).

It is particularly noteworthy that the theorem 
as proposed by Uijen et al. (1979) was capable to 
satisfactorily predict the QRS offset to RNL variability 
in all of the simulated signals.

Uncertainty principle was associated to biologic 
and simulated signals with well-defined mathematic 
characteristics (case p = 0.5). In biologic signals, its 
presence was characterized by lower RNL (0.2-0.5 µV) 
and a high sampling frequency (Figure 4). On the 
other hand, in biologic signals with VLP (SMVT 
group) εcalculated to RNL relationship deviated from 
the multiplicative relationship defining uncertainty 
principle (Figure 3). In this setting, the QRS offset 
variability was roughly unchanged from 0.8 µV 
to 0.3 µV and then increased at the lowest analyzed 
RNL (0.2 µV).

For biological signals, the configuration that 
obtained the lower QRS offset variability was the 
one that combined RNL of 0.5 µV and SF of 10 kHz 
(Figure 4). Additionally, the uncertainty principle 
regression line was statistically significant only 
for sampling frequency above 1 kHz. The angular 
coefficient values (D) tend to decrease for sampling 
frequencies above 2 kHz, suggesting that the uncertainty 
principle could be defined for increased time resolution, 
exclusively for this signal configuration. However, 
the statistical tests (Figure 3) show a decreasing 
behavior on εcalculated values (for all groups) only for 
the lower values of RNL (0.2-0.5 µV). It indicates 
that a progressive decrease in HRECG RNL values 
causes an increased exposition of lower amplitude 
HRECG regions, with lower first derivative values that 
characterizes the limits of QRS offset. On the other 
hand, a higher RNL (0.6-0.8 µV) determined QRS 
offset stability, further shortening the QRS duration 
and excluding regions of low signal amplitude. They 
were, therefore, inappropriate for VLPs detection. 
Then, higher sampling frequencies associated with 
intermediate RNL determined the lowest detection 
error levels, being, therefore, recommended for 
acquisition and processing of these signals.

Some limitations need to be addressed. First, 
sampling frequency was computationally increased 

Figure 4. Waterfall for detection error in human biological signals. The calculated detection error (εcalculated) of all human biological signals 
by sampling frequency (SF) and residual noise level (RNL). Arrow indicates lowest εcalculated. See text for details.
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in order to test its contribution in QRS offset 
detection. Golden et al. (1973) demonstrated that 
by increasing sampling frequency it would not cause 
additional information to be detected. Second, QRS 
offset was simulated by mathematical functions 
(Bragge et al., 2005), which are approximations of 
real world waveforms.

Conclusion
The simulated signals based on linear and exponential 
functions (excepting the case where p = 0.5), with 
different peak values and SFs, did not show the 
behavior that is expected by the uncertainty principle, 
following the theorem proposed by Uijen et al. (1979), 
since the QRS offset variability showed to be influenced 
by RNL and the first derivative of such offset.

High sampling frequencies (10 kHz) and 
RNL around 0.5 µV allows optimal late potential 
identification, obtaining the lowest QRS complex 
offset point detection variability. 

The uncertainty principle of the HRECG signals 
depends on a particular waveform characteristic at 
QRS complex offset, which is simulated by a specific 
exponential decay (case p = 0.5). Thus, it follows 
a deterministic behavior. The application of these 
principles may optimize the analysis and the processing 
of the HRECG signals in the future.
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