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Abstract
The lack of accurate time-spatial temperature estimators/predic-
tors conditions the safe application of thermal therapies, such as 
hyperthermia. In this paper, a comparison between a linear 
and a non-linear class of models for non-invasive temperature 
prediction in a homogeneous medium, subjected to ultrasound 
at physiotherapeutic levels is presented. The linear models 
used were autoregressive with exogenous inputs (ARX) and 
the non-linear models were radial basis functions neural net-
works (RBFNN). In order to create and validate the models, an 
experiment was build to extract in vitro ultrasound RF-lines, 
as well as its correspondent temperature values. Then, features 
were extracted from the measured RF-lines and the models 
were trained and validated. For both the models, the best-fit-
ted structures were selected using the multi-objective genetic 
algorithm (MOGA), given the enormous number of possible 
structures. The best RBFNN model presented a maximum 
absolute predictive error in the validation set five times less 
than the value presented by the best ARX model. In this work, 
the best RBFNN reached a maximum absolute error of 0.42 ºC, 
which is bellow the value pointed as a borderline between an 
appropriate and an undesired temperature estimator, which 
is 0.5 ºC. The average error was one order of magnitude less 
in the RBFNN case, and a less biased estimation was met. In 
addition, the best RBFNN needed less environmental infor-
mation (inputs), given the capacity to non-linearly relate the 
information. The results obtained are encouraging, consider-
ing that coherent results should be obtained in a time-spatial 
modelling schema using RBFNN models.
Keywords: Non-invasive temperature estimation, physiotherapeu-
tic ultrasound, radial basis functions neural networks, multi-objec-
tive genetic algorithms.
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Introduction
Ultrasound as a therapeutic modality is commonly 
used for physiotherapy, hyperthermia, and surgery 
purposes (Ter Haar, 1999). Probably the most used 
one is the application of ultrasound as a way to heat 
tumours to cytotoxic temperatures (41-45 ºC), in order 
to kill them or stop their growth. This technique is 
called hyperthermia, and was also pointed out as a 
viable complementation of chemotherapy and radio-
therapy (Arthur et al., 2005).

One of the aspects which restrain the application 
of thermal therapies is the lack of reliable and non-in-
vasive temperature estimators in both time and space. 
Accurate time-spatial estimators/predictors would 
enable a correct therapy procedure by means of an 
appropriate therapeutic ultrasound instrumentation 
control. For hyperthermia purposes an accuracy of 
0.5 ºC in 1 cm3 is desired (Arthur et al., 2005). Several 
works describing ways for non-invasively estimate the 
temperature have been published. Possible methods 
include electrical impedance tomography (Paulsen et 
al., 1996), microwave radiometry (Meaney and Paulsen, 
1996), magnetic resonance imaging (MRI) (Hynynen et 
al., 1996) and backscattered ultrasound (BSU) (Arthur et 
al., 2005; Seip and Ebbini, 1995; Simon et al., 1998; Ueno et 
al., 1990). From the above techniques, only MRI achieves 
the desired accuracy and spatial resolution. The disad-
vantages of MRI are its costs and the difficulty to use it 
in some thermal therapies (Arthur et al., 2005).

The use of BSU brings some advantages, such 
as its non-ionizing property, low-cost and simple 
signal processing techniques required. Moreover, it 
can reach deep regions inside the body and have a 
good spatial and temporal localisation. BSU viability 
for non-invasive temperature estimation depends on 
measurable ultrasonic temperature-dependent param-
eters/features. In the work of Arthur et al. (2005), three 
categories of methods that use BUS for non-invasive 
estimation were pointed out: the ones that track the 
eco-shifts produced by changes in sound velocity and 
medium expansion, the ones that use the measurement 
of the attenuation coefficient, and those that measure 
the change in backscattered energy from tissue inho-
mogeneities. Actually, a fourth category exists that is 
based on tracking the frequency changes of the echo 
components (Seip and Ebbini, 1995). This variation is 
also due to the change in the speed of sound and in 
the medium expansion. Independently of the category, 
all methods assume that a linear relationship exists 
between the extracted ultrasonic parameters and the 
temperature.

Resumo
A falta de estimadores de temperatura espaço-temporais que sejam 
precisos impede a aplicação segura das terapias térmicas, como por 
exemplo a hipertermia. Neste artigo é apresentada uma comparação 
entre uma classe de modelos lineares e uma classe de modelos não-
lineares, na predição não invasiva de temperatura num meio homo-
géneo, quando o mesmo é aquecido por ultra-som em níveis usados 
em fisioterapia. Os modelos lineares considerados foram do tipo 
auto-regressivo com entradas exógenas (ARX); a nível não-linear 
foram considerados redes neuronais RBF (RBFNN). Para treinar e 
validar os modelos foram recolhidas os ecos provenientes do meio, 
bem como os correspondentes valores de temperatura. Após a colheita 
de informação, foram extraídas características dos ecos medidos e 
posteriormente os modelos foram treinados e validados. Para ambas 
as classes de modelos, as melhores estruturas foram seleccionadas 
usando um algoritmo genético multi-objectivo (MOGA), devido ao 
número elevado de estruturas possíveis. O melhor modelo RBFNN 
apresentou um erro máximo absoluto cinco vezes inferior ao erro 
máximo absoluto apresentado pelo melhor modelo ARX. Neste traba-
lho, o melhor modelo RBFNN apresentou um erro máximo absoluto 
de 0,42 ºC, valor este que é inferior ao limite (0,5 ºC) apresentado 
como sendo a fronteira entre um estimador desejado e um estimador 
indesejado. O erro médio cometido pelo melhor modelo neuronal é 
uma ordem de grandeza inferior ao erro médio apresentado pelo 
melhor modelo linear, obtendo-se deste modo uma estimação menos 
enviesada no caso das redes neuronais, com menos informação do 
ambiente (menos entradas) devido ao processamento não-linear 
dos dados de entrada. Os resultados obtidos são encorajadores, 
apontando no sentido de se obter bons resultados numa estimação 
espaço-temporal.
Palavras-chave: Estimação não-invasiva de temperatura, 
Fisioterapia por ultra-som, Redes neuronais RBF, Algoritmos 
genéticos multi-objectivo.
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In this work a comparison between a linear and 
a non-linear relationship involving the temperature 
in a homogeneous medium, and six spectral features 
and one temporal feature is proposed. The linear 
relationship was accomplished by means of an auto-
regressive model with exogenous inputs (ARX), while 
the non-linear modelling was performed by means 
of radial basis functions neural networks (RBFNNs). 
In both modelling strategies, the appropriate values 
of the structure variables were selected in a genetic 
multi-objective fashion by means of the multi-ob-
jective genetic algorithm (MOGA) (Fonseca and  
Fleming, 1993). The temperature-dependent features 
used in this work were applied with success in Teixeira 
et al. (2005) and Teixeira et al. (2006), thus the reason 
of it application in this work. In Teixeira et al. (2004) a 
comparison between the ARX and the RBFNN models 
was performed for invasive temperature estimation 
in a homogeneous medium. In the work of Teixeira et 
al. (2004), the models were trained for one step-ahead 
prediction, the RBFNNs inputs and number of neurons 
were selected by the MOGA while the ARX inputs 
were selected manually. In the present work, a more 
trustworthy comparison is proposed, where both the 
ARX inputs and RBFNN inputs and number of neu-
rons are selected by the MOGA, in a non-invasive (as 

required in a clinical environment) long-term (2 hours 
approximately) temperature prediction scheme.

Materials and Methods
The experimental setup used is presented in Figure 1.

In this figure, a reservoir containing 1,400 ml of 
glycerine can be seen, where three lead spheres (3 mm 
diameter) acting as scatterers are submerged. The 
glycerine medium with lead spheres was chosen hav-
ing in mind the creation of a homogeneous medium 
with absorption compared to that of biological tissues, 
where a considerable heating can be reached, namely 
at the sphere/glycerine interface, with the intention 
to simulate a soft-tissue/bone interface. The glycerine 
heating changes its acoustical proprieties, namely the 
attenuation coefficient, and variations on the echo 
spectral amplitudes and bandwidth can be seen. The 
temperature change is also expressed in variations on 
speed of sound and medium expansion, which can be 
seen in the temporal position and central frequency 
changes of the echoes.

The temperature was measured at the central 
sphere using a type K thermocouple connected to a 
module with integrated cold junction compensation 
(Fluke 80TK). The medium was heated using an ul-
trasonic physiotherapeutic device (Ibramed Sonopulse 

Figure 1. Experimental setup, viewed from the lateral, top and axial perspectives. The relative position between the 

therapeutic ultrasound (TUS) and the imaging ultrasound (IUS) transducer can be seen, as well as the positioning of the 

lead spheres.
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Generation 2000, São Paulo, Brazil), working at 1 MHz 
with an effective radiation area of 3.5 cm2. The thera-
peutic ultrasound (TUS) device heated the medium 
at three different intensities: 1, 1.5, and 2 W/cm2 in 
continuous mode.

In order to perform a non-invasive temperature 
estimation trial, RF-lines were collected using an 
imaging ultrasound (IUS) transducer (Sonic, USA), 
driven by a PC controlled pulser/receiver (Corelec, 
France). The IUS transducer was a 5 MHz non-focused 
piston-like ultrasound transducer with a diameter 
of 1.27 cm. The IUS beam reached the spheres in a 
direction perpendicular to the TUS beam direction, 
avoiding the saturation of the imaging device. At each 
10 seconds a complete RF-line (2,048 points, sampled at 
40 MHz) was collected, as well as a temperature value, 
and saved for future features/parameters extraction. 
Each experiment lasted approximately 2 hours, where 
the glycerine was heated in the first hour, then the 
TUS beam was interrupted and the medium left to 
cool back to room temperature in the remaining hour. 
TUS intensity and frequency were kept constant in 
the heating hour. In the same way, the intensity and 
frequency of the IUS transducer were maintained 
constant during the entire 2-hour experiment. For each 
intensity, three data sets were saved, containing the 
temperature-RF-line pairs. The temperature ranges 
obtained are summarised in Table 1. As referred pre-
viously, the achievement of non-invasive temperature 
predictors require the computation of temperature-
dependent features from the collected RF-lines. Since 
temperature measurement was only performed in the 
central sphere, feature extraction was only performed 
in the echo originated by this scatterer in conjunc-
tion with the thermocouple, in order to eliminate 
information from other regions of the medium where 
the temperature is unknown. After a boxcar window 
application, used to isolate the information, a fast 
Fourier transform (FFT) was employed and six spectral 
features computed. The spectral features were: the 
amplitude of the fundamental component originated 

by the TUS device, located at approximately 1 MHz; 
the amplitude of the first and second harmonics of the 
fundamental component originated by the TUS beam, 
located at approximately 2 and 3 MHz, respectively; the 
amplitude, central frequency, and bandwidth (-6 dB) 
of the component originated by the IUS probe, which 
is located around the 5.5 MHz. The temporal feature 
extracted was the time position of the echo originated 
by the central scatterer, determined using the Hilbert 
Transform strategy. In a next step, the extracted fea-
tures and the past temperature values were filtered 
using a causal low-pass Butterworth digital filter (order 
1, cut-off frequency = 1/20 of the Nyquist frequency), 
and normalised to values between 0 and 1. The filter 
parameters were selected having in mind the noise 
reduction, maintaining fundamental behaviour of 
the signals. On the other hand, the normalisation was 
necessary to discard scales differences between the 
features. Both the two pre-processing tools were nec-
essary to improve the training and structure selection 
of the models under study. At this point we have the 
following information for training, structure selection 
and validation: normalised and filtered amplitude of 
the fundamental component originated by the TUS 
beam – AFTUS; normalised and filtered amplitude of 
the first and second harmonics of the fundamental 
component originated by the therapeutic device –  
AH1TUS and AH2TUS; normalised and filtered ampli-
tude, central frequency and bandwidth of the compo-
nent originated by the imaging device – AIUS, FIUS, and 
BWIUS; normalised and filtered temporal position – TP; 
and normalised and filtered temperature – T. In Figure 
2, one example of the extracted features, as compared 
with the measured temperature is presented. Looking 
at this figure, it can be said that only TP, BWIUS, and FIUS 
present some small linearity with the temperature. In 
general, the temperature was more precisely related 
with the extracted features by non-linear methods.

The past lags of the previously defined variables 
(AFTUS, AH1TUS, AH2TUS, AIUS, FIUS, BWIUS, TP, and T) 
were assigned as RBFNN and ARX inputs. In the 

Table 1. Temperature ranges obtained for the three applied intensities. The maximum temperature is attained after a 

one-hour heating, while the final temperature is obtained at the end of the experiment, one hour after the TUS device 

was turned off.

Temperature (ºC) Intensity (W/cm2)

1.0 1.5 2.0

Initial 28.3 24.5 28.2
Maximum 33.1 34.8 38.2
Final 29.2 28.3 31.2
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framework used in this work and in the previous ones 
reported by the authors, three data sets are necessary: 
1) a data set used for the computation of the model 
parameters, called the training set; 2) a data set used 
to access the models generalisation performance dur-
ing the training and structure selection phases, called 
the test set; and 3) a third data set used to evaluate the 
best obtained models at the end of the training and 
structure selection phases, called the validation set. 
Having in mind the attainment of well-fitted models 
for the three applied intensities, the training set was 
formed by randomly selecting patterns from the three 
available sets (one for each intensity), 1/3 from each 
set. The complete data sequence collected at 1.5 W/cm2 
was selected as the test data set, and the complete data 
sequence collected at 2 W/cm2 was used to validate 
the best individuals at the end of the MOGA. This 
validation data set is the most non-linear, and the 
temperature range includes the normal human-body 
temperature, making the validation process more 
realistic.

Mathematically the employed ARX model can be 
described by:

	
(1)

where  are the model parameters and  are 

the model inputs at instant k. Note that the past lags 
of the estimated variable (T) are included in the pos-
sible inputs, turning this model autoregressive. The 
values of  were determined using the linear least 
squares strategy.

A RBFNN is a three-layered neural network (NN) 
where the first layer is a set of inputs, which connects 
the NN to its environment. The second layer, the 
unique hidden layer, is a set of processing elements 
called neurons, which perform a non-linear transfor-
mation on the input data. At the last layer the outputs 
of the hidden layer are linearly combined to produce 
the overall output of the NN (Haykin, 1999). The in-
put/output relation for a RBFNN is given by:

	 (2)

where n is the number of neurons in the hidden layer, 
b is the bias term, ||.|| is a norm, in this work an 
Euclidean norm was employed, and  is a set of 
non-linear radial basis functions with centre at . 
The basis functions are evaluated at points  and are 
weighted by   at the last layer. The basis functions 
used were of Gaussian type:

	 (3)

where   is the spread of the ith function.
The manual selection of the appropriate inputs in 

the ARX case, or the appropriate choice of the inputs 
and number of neurons in the RBFNN case, is a hard 
task due to the enormous number of possible model 
configurations. To solve this problem a MOGA was 
employed. The MOGA is a bio-inspired algorithm, 
which performs a population-based search by employ-
ing operators inspired in the natural evolution, such as 
selection, crossover, and mutation. This algorithm mi-
nimises or maximises a number of problem-dependent 
features (objectives), having in mind the attainment 
of well-fitted and also feasible solutions. In order to 
reach reasonable solutions, the objectives should be 
defined as goals to be met. For each goal, a priority 
is assigned, which defines the relative importance of 
the related objective for the final individual applica-
tion. At the end of a MOGA run, a set of best-fitted 
individuals is obtained, which are the ones that fulfil 
or almost fulfil most of the a priori defined goals. In 
this work, the MOGA was allowed to choose an ap-
propriate set of inputs for the ARX models and an 
appropriate set of inputs and number of neurons for 
the RBFNN models.

Figure 2. Extracted features from the measured RF-lines 

compared with the measured temperature (T). AFTUS: 

Amplitude of the fundamental component originated 

by the TUS beam. AH1TUS and AH2TUS: Amplitude of 

the first and second harmonics of the fundamental com-

ponent originated by the therapeutic device. AIUS, FIUS, 

and BWIUS: Amplitude, central frequency and bandwidth 

of the component originated by the imaging device. TP: 

Temporal position.
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The MOGA generates 200 generations of 100 indi-
viduals each (100 NN or 100 ARX). The crossover and 
mutation probabilities are the same for both the ARX 
and RBFNN cases, and were defined as 0.7 and 0.5, re-
spectively. These MOGA parameters were selected after 
several tests considering other parameters arrange-
ments. The search space was delimited by defining: 
the possible number of neurons in the RBFNN case, 
and the possible number of inputs and the maximum 
lag (MLAG) considered for the input variables, for both 
ARX and RBFNN structure selection. The number of 
NN neurons and the number of inputs were defined as 
a number in the interval [2, 20], and the value of MLAG 
was defined as 20. These values were selected after 
several tests considering other possibilities.

As previously said, the ARX parameters were 
determined using the linear least-squares strategy. 
On the other hand, the RBFNN non-linear parameters 
(centres and spreads) were found using the Levenberg 
Marquardt (LM) algorithm, which is recognised as 
the best method for non-linear least-squares prob-
lems (Ruano et al., 1992), which is the case of RBFNN 
training. The linear parameters of the NN (bias and 
weights) were also determined using the linear least-
squares method. The initial value of the centres and 
spreads were found using a clustering algorithm, in 
this work the optimal adaptive k-means algorithm was 
used (Chinrungrueng and Séquin, 1995). To stop the 
neural networks training, the “early-stopping” crite-
rion was used. This termination criterion accesses the 
model generalisation performance at each iteration of 
the training algorithm, and stops the training when 
this performance deteriorates, preventing model over-
training (i.e. NNs which models the noise and are only 
specialised in the training data), being recognised as 
the optimal termination criterion for real-world ap-
plications (Principe et al., 2000).

At each MOGA iteration (generation), and after 
the training, the performance of each model was ac-
cessed having in mind the extraction of objectives to 
minimise, and consequently to rank the individuals, 
improving the selection and reproduction of the best 
fitted. For the ARX models, the following measures 
were computed:
•	 Root mean square error in the training set –  

RMSETR;
•	 Root mean square error in the test set – RMSETE;
•	 Maximum root mean square error in all the predic-

tion steps – MPE;
•	 Model-validity tests;
•	 Linear parameters norm – LPN.

For the RBFNN case the same measures were 
computed, in addition, the model complexity (MC) 
was included. Given the non-linear behaviour, the com-
plexity of the RBFNN tends to reach very high values, 
compromising the model feasibility in a real-world 
environment. The choice of discarding this measure 
from the ARX selection procedure was due the fact that 
its complexity is the number of inputs, being 20 in the 
maximum, which is a very low value.

The model validity tests are explained in Billings 
and Voon (1986), and used in Teixeira et al. (2005) and 
Teixeira et al. (2006). These model validity tests involve 
the computation of first and higher order correlations 
between model inputs, outputs and residuals. In this 
work, as in Teixeira et al. (2005) and Teixeira et al. 
(2006), only the conditions involving the first order 
correlations were used, because the results obtained 
using the higher order correlations were not better in 
the RBFNN case, and it does not make sense to apply 
high order correlations to ARX models (linear models). 
The first-order correlations used were:

	 (4)

	 (5)

where Ree(.) is the auto-correlation of the error se-
quence, Rue(.) is the cross-correlation between inputs 
and the error, δ(.) is the Dirac's delta function, and τ is 
the time-shift or lag parameter associated with the cor-
relation functions. In fact, Rue(.) will never be precisely 
zero for all lags, in this way the equality is considered 
true if the normalised value of Rue(.) lies within the 95% 
confidence limits defined as:

	 (6)

where N is the number of training patterns. In the 
same way, the value of Ree(.) never equals the delta 
function, but the condition is considered true if the 
normalised value of the error auto-correlation enters 
the 95% confidence limit before lag one.

The NNs complexity (MC) was computed as the to-
tal number of parameters for a particular structure:

	 (7)

where NC is the number of centres, NE is the number 
of inputs, NS is the number of spreads, and NW is the 
number of linear weights.

An efficient model structure selection requires 
the minimisation of the previously defined model 
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measures. The MOGA was assigned to return, if 
possible, models which fulfil both the goals defined 
for the model measures. In order to perform a trust-
worthy comparison, the same goal values and priori-
ties were defined for the ARX and RBFNN structure 
selection, with exception of the MC, which is only 
defined for the NNs. The RMSETR was defined as a 
goal with value 0.004 (normalised value) and priority 
1. In order to promote the selection of models with a 
high generalisation capacity, RMSETE and MPE were 
defined as goals with priority 2 and values 0.002 and 
0.003 (normalised values), respectively. The maximum 
of the correlation tests were defined with a goal value 
of CI = 0.074, and with priority 1. Models with a high 
LPN usually are too specialised in the training data, 
and when considering other data sets tend to have an 
exacerbated error, thus the LPN was defined as a goal 
with value 2.0 and priority 1. This value was defined 
based on the maximum number of NN neurons and 
in the data normalisation employed. The complexity 
of the NNs was defined as a goal with priority 1 and 
value 100. This goal value was defined having in mind 
the search space defined.

Results

ARX
The application of MOGA to the ARX models returned 
one preferable individual (PI). This individual was 
tested in the validation data (in this work the data 
collected at 2 W/cm2), and a maximum absolute er-
ror of 2.08 ºC was obtained. The minimum, average, 
and mean squared error obtained for this individual 
was: -0.97 ºC, 0.22 ºC and 0.38 (ºC)2, respectively. The 
inputs assigned by the MOGA to this PI are presented 
in Table 2.

The predicted temperature waveform in compari-
son with the measured one is presented in Figure 3a, 
the error signal is presented in Figure 3b, and the error 
distribution is presented in Figure 3c.

The performance of the best individual from the 
MOGA point of view is summarised in Table 3.
RBFNN
The application of MOGA to the RBFNN models held a 

set of 18 preferable individuals (PI). As in the ARX case, 
the PIs were tested in the validation data. Afterwards, 
the maximum absolute error in the total validation 
sequence was computed, and the best individual se-
lected as the one with the lowest maximum absolute 
predictive error.

The selected individual has 9 neurons, and presents 
a maximum absolute error of 0.42 ºC, a maximum er-
ror of 0.26 ºC, a minimum error of -0.42 ºC, an average 
error of -0.020 ºC, and a mean squared error of 0.0082 
(ºC)2.

The inputs of this individual are presented in 
Table 4.

The predicted temperature waveform in compari-
son with the measured one is presented in Figure 4a, 
the error signal, as well as its average, maximum and 
minimum values are presented in Figure 4b. In Figure 
4c the normalised error distribution is presented.

The properties of the best RBFNN model, from the 
MOGA point of view are presented in Table 5.

Discussion
Analysing Figures 3 and 4, it can be said that, for 
the conditions of this work, RBFNN predicts the 
temperature non-invasively in the glycerine medium 
with an error much smaller than the best obtained 
ARX model. Precisely, the maximum absolute error 
value attained for the RBFNN is approximately five 
times smaller than the error value obtained with the 
best ARX model. In addition, the maximum absolute 
error for the RBFNN is bellow 0.5 ºC, which is the 
value pointed as the borderline between an appropri-
ate and an undesired temperature estimator. Given 
this threshold value, one can say that the best ARX 
model is an undesired estimator for single point and 
non-invasive temperature estimation in the modelling 
conditions applied. In terms of average error, the value 
attained for the best neural network is approximately 
one order of magnitude smaller than the value at-
tained for the autoregressive models, indicating that 
the ARX models produce a more biased estimate than 
the RBFNN. This fact can also be seen in Figures 3c 
and 4c, where the error distribution is presented for 
both the best models. These figures show also that the 

Table 2. Inputs of the best ARX model expressed as lags of the extracted features and lags of the temperature signal.

Lags of

AFTUS AH1TUS AH2TUS AIUS BWIUS FIUS TP T

0, 17 0, 5, 14 - 0, 2, 3, 19 1, 5, 11, 18 0, 11, 13, 17 5 2, 4
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estimate variance in the RBFNN case is smaller then 
in the ARX case, as expected. More precisely, the error 
committed by the RBFNN is practically all contained 
in the interval [-0.1 ºC, 0.1 ºC]. On the other hand, the 
error shown by the best ARX is practically all contained 
in the interval [-0.5 ºC, 0.5 ºC].

As presented in Table 2, the best ARX has 20 inputs, 
which are pre-defined as the maximum number of 
inputs. Looking at this table, one can see the presence 
of short-term lags of the extracted features (AFTUS(k), 

Table 3. Characteristics of the best ARX model as compared to the a priori defined MOGA goals.

RMSETR RMSETE MPE LPN Ree Rue

Obtained 0.0011 0.00099 0.0031 6.68 0.053 0.10

Goal 0.004 0.0020 0.0030 2.0 0.074 0.074

Priority 1 2 2 1 1 1

Figure 3. Performance of the best ARX model in the validation data; a) measured (solid line) and predicted temperature 

(dashed line); b) Error signal (solid line) and its maximum (dashed line), minimum(dash-dot line), and average (dotted 

line) values; c) Normalised error distribution.

Table 4. Inputs of the best RBFNN model expressed as lags of the extracted features and lags of the temperature signal.

Lags of

AFTUS AH1TUS AH2TUS AIUS BWIUS FIUS TP T

- 3 4, 6 0, 4, 14 16 13 5 4, 13, 19

AH1TUS(k), AH1TUS(k-5), etc.) and of the temperature 
(T(k-2), T(k-4)), and also long-term lags of the extracted 
features (AFTUS(k-17), AIUS(k-19), FIUS(k-17)). Analysing 
Table 4 one can see that the best RBFNN has 12 inputs, 
that is 6 inputs less than for the ARX, which shows 
that the non-linear model needs less input informa-
tion, through an increase in the processing capacity 
(complexity). The presence of short-term (AH1TUS(k-3), 
AH2TUS(k-4), AH2TUS(k-6), TP(k-5), etc.) and long-term 
(AIUS(k-14), BWIUS(k-16), FIUS(k-13)) lags of the extracted 

a)

b)

c)
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features are present. The estimated temperature (T) 
contributes with one short-term lag (T(k-4)) and with 
two long-term lags (T(k-13) and T(k-19)). Looking at the 
two input tables, it can be realised that the lag 20 never 
appears, showing that the value chosen for MLAG is 
sufficient to attain accurate temperature predictors.

In Table 3, the performance of the best ARX from 
the MOGA point of view is presented. Comparing the 
values obtained with the a priori defined goals it can 
be said that the best ARX fulfils 3 out of 6 goals. This 
model fulfils the goal defined for RMSETR, RMSETE 
and Ree, but not the most important one, which is the 
value defined for MPE, given that accurate temperature 
predictors are desired. The goal values defined for 
the linear parameters norm (LPN) and Ree were not 

Figure 4. Performance of the best RBFNN model in the validation data; a) measured (solid line) and predicted temperature 

(dashed line); b) Error signal (solid line) and its maximum (dashed line), minimum (dash-dot line), and average (dotted 

line) values; c) Normalised error distribution.

Table 5. Characteristics of the best RBFNN model as compared to the a priori defined MOGA goals.

RMSETR RMSETE MPE LPN Ree Rue MC

Obtained 0.00090 0.0010 0.0024 1.61 0.074 0.075 127

Goal 0.004 0.0020 0.0030 2.0 0.074 0.074 100

Priority 1 2 2 1 1 1 1

fulfilled either and the obtained values are distant 
from the goal values.

In Table 5 the performance of the best RBFNN from 
the MOGA perspective is presented. This model ful-
fils 5 out of 7 goals. The ones not fulfilled are the MC 
and Rue. Although these goals were not fulfilled the 
obtained values are close to the a priori defined values. 
In addition, this model fulfils the high priority goals 
(RMSETE, and MPE), showing its appropriateness for 
non-invasive temperature estimation in the applied 
experimental conditions.

Beyond the attained precision, the fundamental 
merit of this work lies on the alternative methodology 
employed. Both the models parameters and structure 
were extracted from the data, i.e. data-driven models. 

a)

b)

c)
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This means that mathematical simplifications and 
physical constant determination were discarded. This 
work presents alternative models which out-perform, 
in terms of precision, published empirical models. For 
example in the work of Seip and Ebbini (1995) a stan-
dard deviation of the error of 0.4 ºC is presented, while 
the best RBFNN presents a standard deviation of the 
error of 0.09 ºC. One of the limitations presented in Seip 
and Ebbini (1995) is the assumption that temperature is 
linear with the spectral components of the echoes, for 
temperature changes below 10 ºC. The non-linear and 
data-driven behaviour of the RBFNN models hereby 
presented, can probably overcome these limitations.

Given the non-invasive and recursive behaviour 
of the estimators, one question that arises is the initial 
temperature definition. Both model types (ARX and 
RBFNN) were tested by furnishing them an initial tem-
perature with 1 ºC difference around the correct value, 
and it was observed that the error of both model types 
converge to the one obtained with the correct initial 
temperature. In fact, for the best RBFNN this error is 
below 0.5 ºC after 4 min. This means that probably, in 
an in vivo application, an initial temperature of 37 ºC 
can be considered, given that well-trained models can 
cancel initial temperature errors.

Conclusions
The work presented in this paper compares two 
modelling strategies for non-invasive single-point 
temperature prediction in a homogeneous medium. 
The two compared strategies were an autoregressive 
model with exogenous inputs (linear model) and radial 
basis functions neural network (non-linear model). 
The obtained results show that the relation between 
the extracted RF-lines features and the temperature 
of the medium is essentially non-linear, once the per-
formance obtained with the best RBFNN was clearly 
superior to the linear (ARX) approach. The best RBFNN 
presents a maximum absolute predictive error five 
times smaller than the best ARX model. In addition it 
needs less information from the environment, given 
the reduction on the number of inputs.

The results obtained are encouraging for the ap-
plication of the RBFNN in multi-layered media, and 
subsequently in in vivo applications. In the future, 
a spatial modelling with a resolution of 1 cm3 and 
maximum absolute error less than 0.5 ºC, using these 
neural networks, must be investigated.
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