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Abstract
The objective of this work is the generalisation performance 
assessment, in terms of intensity, of non-invasive temperature 
models based on radial basis functions neural networks. 
The models were built considering data collected at three 
therapeutic ultrasound intensities, (among 0.5, 1.0, 1.5 and 
2.0 W/cm2) and then were validated in fresh data, which 
contain information from the trained intensities and form 
the untrained intensity. The models were built to estimate 
the temperature evolution (during 35 min) in a gel-based 
phantom, heated by physiotherapeutic ultrasound at four 
different intensities. It was found that the best models built 
without data from the intermediate intensities (0.5, 1.0 and 
1.5 W/cm2) perform well in validation at all the intensities. 
On the other hand, the models built without data from the 
extrapolated intensity (2,0 W/cm2) presented unsatisfactory 
results in validation. This is because the models parameters 
were found considering a space bounded by the data used in 
their construction, and then the application of data outside 
this space resulted in poor performance. The models build 
without the intermediate data, for the three considered points, 
presented a maximum absolute error inferior to 0.5 ºC (which 
is accepted for therapeutic applications). The best models 
also presented a low computational complexity, as desired 
for real-time applications.
Keywords: Non-invasive temperature estimation, Data-driven 
models, Radial basis functions neural networks, Multi-objec-
tive genetic algorithms, Ultrasound, Physiotherapy.

Resumo
O objetivo deste artigo é a avaliação da capacidade de generalização, 
em termos de intensidade, de estimadores não invasivos de tempe-
ratura, baseados em redes neurais de funções de base radial. Os 
modelos foram treinados e a sua estrutura selecionada para estimar 
a evolução da temperatura em um phantom aquecido com ultra-
som (tipicamente aplicado em fisioterapia) a quatro intensidades 
diferentes (0,5; 1,0; 1,5 e 2,0 W/cm2). Neste trabalho, os modelos de 
temperatura foram construídos usando dados coletados em 3 das 4 
intensidades e posteriormente validados em dados novos. Os dados 
de validação foram coletados nas quatro intensidades consideradas, 
ou seja, os modelos foram avaliados nas intensidades treinadas e 
numa intensidade não treinada, de forma a se poder realizar uma 
correta avaliação da capacidade de generalização. Os modelos cons-
truídos sem o uso dos dados coletados a intensidades intermédias 
(0,5; 1,0 e 1,5 W/cm2), mostraram boa performance (erro máximo 
absoluto inferior a 0,5 ºC) em todas as intensidades. Por outro lado, 
quando utilizando os dados coletados na única intensidade extrema  
(2 W/cm2), mostraram baixa performance em validação. Isto ocorre 
pelo fato da temperatura a ser estimada (coletada a 2 W/cm2) estar 
fora do espaço delimitado pelos dados de treinamento, ou seja, o 
modelo estaria sendo usado para extrapolar valores de temperatura. 
Os melhores modelos apresentaram também uma baixa complexidade 
computacional, essencial para aplicações de tempo real.
Palavras-chave: Estimação não invasiva de temperatura, Modelos 
“caixa preta”, Redes neuronais de funções de base radial, Algoritmos 
genéticos multi-objetivo, Ultra-som, Fisioterapia.
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Introduction
A key factor for an accurate therapeutic device control 
system is the existence of precise temperature estima-
tors, in time and space. For hyperthermia/diathermia 
applications, a spatial resolution of 1 cm3 and a maxi-
mum absolute error of 0.5 ºC is desired (Arthur et al., 
2005). 

Many approaches for non-invasive temperature 
estimations were published, mainly based on elec-
trical impedance tomography (Paulsen et al., 1996), 
microwave radiometry (Meaney et al., 1996), magnetic 
resonance imaging (MRI) (Hynynen et al., 1996), and 
backscattered ultrasound (BSU) (Arthur et al., 2005). It 
was reported that only the approaches based on MRI 
achieved the desired temperature resolution required 
for hyperthermia/diathermia. However, the cost of 
the MRI devices and the difficulty of handling it for 
some therapeutic modalities limit the development and 
success of temperature estimators. On the other hand, 
BSU needs much less expensive instrumentation, ultra-
sonic energy is non-ionizing, relatively simple signal 
processing tools are necessary to process data, and it is 
possible to use the same form of energy for heating and 
for temperature estimation. The application of BSU for 
non-invasive estimation was extensively reported in the 
past ten years. The most important features extracted 
from BSU that were used for estimation up to now are: 
temporal echo-shifts (TS) originated from changes 
on medium speed of sound, and medium expansion 
and contraction due to temperature changes (Simon 
et al., 1998); harmonic shifts, also due to temperature, 
induced expansion and contraction, which changes 
the mean scatterer spacing (MSE) of the medium (Seip 
and Ebbini, 1995); changes of the frequency dependent 
attenuation (Ueno et al., 1990); and changes on the back-
scattered energy form tissue inhomogeneities (Arthur 
et al., 2005). These published methods assume a linear 
relationship between features and temperature, need 
a priori determination of medium constants, and per-
form mathematical simplifications to reach linearity.

In this work, data were collected from a homo
geneous gel-based phantom where three thermo-
couples were placed, representing the points where 
temperature is to be estimated. The medium was 
heated using therapeutic ultrasound at four different 
intensities (0.5, 1.0, 1.5 and 2.0 W/cm2). The collected 
data were pre-processed and then fed to the entry 
of radial basis functions neural networks (RBFNNs) 
(Broomhead and Lowe, 1988). The multi-objective ge-
netic algorithm (MOGA) (Fonseca and Fleming, 1993) 
was applied to find the best-fitted RBFNN structures. 

Well-fitted models for thermal therapeutic device 
control must have a good intensity generalisation 
capacity, in order to cope with intensity differences 
between the ones used in the therapeutic procedure 
and those used in the creation of the models, thus en-
abling a fine control. In this work four different types 
of MOGA runs were performed, corresponding to 
training and structure selection, always leaving one 
of the four intensities out. At the end of each MOGA 
run, the best attained models, selected according to a 
predefined parameterization (model errors, complex-
ity and validity tests), were tested in fresh data (new 
data belonging to the intensities used in the models 
creation and data belonging to the intensity that was 
left out of the models creation), in order to assess the 
model’s generalisation capacity.

Material and Methods

Experimental setup
The estimation studies presented in this work were 
based on backscattered ultrasound and temperature 
signals, collected from a homogeneous gel-based 
phantom. The phantom with dimensions 120 mm × 
60 mm × 120 mm is composed of (in % weight): 86.5% 
of degassed water, 11% of glycerine, and 2.5% of agar-
agar (Sato et al., 2003). The complete experimental setup 
is presented in Figure 1.

The phantom was immerged in a degassed-water 
tank to promote the coupling with the transducers, and 
to discard abrupt room temperature changes. The tank 
temperature was maintained at approximately 22 ºC, 
by using an aquarium heater (75 W) with an integrated 
thermostat. The phantom was heated by a therapeutic 
ultrasound (TUS) device (Sonopulse Generation 2000, 
Ibramed, Brazil), that emits a 1-MHz continuous wave. 
Four different TUS intensities were essayed (0.5, 1.0, 1.5 
and 2.0 W/cm2). The BSU signals were collected using 
an imaging ultrasound (IUS) transducer (V310SU, Pa-
nametrics-NDT, USA), working in pulse/echo mode at  
5-MHz centre frequency. The IUS transducer is driven 
by a computer controlled pulser/receiver (5800PR, 
Panametrics-NDT, USA), which collects the radio 
frequency (RF) BSU signals and send them to an oscil-
loscope (TDS2024, Tektronix, USA) to be digitized at  
50 MHz. Each RF signal is composed by 2,500 samples. 
The temperature was measured at the different points 
using k-type thermocouples, which were connected 
with a cold junction compensation (CJC) multiplexer 
(digital multimeter 2700/7700, Keithley, USA). In Figure 
2, the position of the thermocouples is presented.
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The thermocouples were placed in points along 
the axial line of the IUS transducer, 10 mm spaced, 
and 60 mm apart from the TUS transducer face. In 
Figures 1 and 2 the relative position of the TUS and 
IUS transducers is presented. The transducers are 
perpendicular between each other, in order to reduce 
acoustic interference. Every 10 s the digitized BSU 
and temperature signals were transferred from the 
oscilloscope and from the multimeter respectively 
to a personal computer (PC) via a GPIB bus. On each 
experiment the temperature signal is composed by  
5-min room-temperature baseline, 15-min heating 
curve and 15-min cooling curve.

Data pre-processing
In this work the temporal echo-shifts (TS) of the echoes 
coming from the thermocouples placed in the points 
under study, were extracted and assigned, in conjunc-
tion with the past temperature values, as RBFNN input 
variables. A method that directly evaluates continu-
ous time-shifts from sampled data was applied. This 
method constructs a spline-based piecewise continu-
ous representation of a sampled reference signal (in 
this case, the echoes of the first BSU signal in each 
experiment), then finds the minimum of the sum of 

Figure 1. Experimental setup. The medium is heated by 

the therapeutic transducer, while an imaging transducer 

collect backscattered ultrasound signals from the me-

dium. The temperature values were collected by three 

thermocouples placed at the points under study.

Figure 2. Thermocouples disposition in relation to the 

TUS and IUS beams.

squared errors between the reference and the delayed 
signals (in the case, the echoes of the other BSU signals 
throughout each experiment) to determine their rela-
tive time-shift (Viola and Walker, 2005). An example 
of the computed TS as compared to the measured 
temperature, for the three points (P1, P2 and P3), is 
presented in Figure 3.

Looking at Figure 3, it is possible to realise that 
for the phantom used, TS increases and decreases 
with temperature, meaning that the acoustic speed in 
the medium varies accordingly. However, there exists 
media where the acoustic speed decreases with the rise 
in temperature, e.g. fat tissue.

The computed TS and the measured temperature 
change signals were filtered and normalised to values 
between -0.5 and 0.5. It was applied a causal low-pass 
Butterworth filter (Proakis and Manolakis, 1995) with 
order 2 and cut-off frequency of 1/20 of the Nyquist 
frequency. These filter parameters were chosen to re-
duce noise while maintaining the signals fundamental 
behaviour. Normalization enables signals with dif-
ferent scales to be applied together as neural network 
inputs. To be noticed that in this work the temperature 
and the TS have very different scales, as it can be seen 
in Figure 3.

After normalisation and filtering, the temperature-
change signals (ΔT) and the TS signals were arranged 
in separate files, according to the respective intensity 
and spatial point (P1, P2 and P3 in Figure 2), and ap-
plied to the RBFNN training, structure selection and 
validation. In the applied methodology, three different 
types of data sets were used: the training set, the test 
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set, and the validation set. The training set contains 
data used by the training algorithm to compute the 
RBFNN parameters. The test set is formed by data, dif-
ferent from those contained in the training set, which is 
used during the MOGA running to stop the training of 
each model, and to obtain generalisation performance 
descriptors, viewed as objectives to minimize. The 
validation set contains data, different from that present 
in both training and test sets, and was used to assess 
the models generalisation performance (in fresh data), 
after the MOGA structure selection. To be mentioned 
that both test and validation sets were subdivided 
into sub-sets. Each sub-set contains only data from 
one spatial point and from an intensity value. The test 
set is formed by nine sub-sets, which correspond to 
data from the three spatial points and from the three 
intensities applied. On the other hand, the validation 

set included 12 sub-sets, since four intensities were 
considered instead of three.

RBFNN model
In this work a non-linear autoregressive model with 
exogenous inputs (NARX) was applied. The model 
structure is presented in Figure 4.

This model is composed by a static RBFNN with 
external dynamics induced by their inputs. The model 
inputs considered were the past-lags of the computed 
TS and of the measured ΔT. A three layered feed-
forward RBFNN was considered. The first layer is a 
set of inputs; the second layer performs a nonlinear 
transformation on the input data, and is composed by 
a set of processing elements (neurons). The third layer 
combines linearly the outputs of the hidden neurons to 
produce the overall output. The input/output relation 
is given by equation 1:

	

(1)

where n is the number of neurons in the hidden layer, 
b is a bias term, ||.|| represents the Euclidean norm, 
and  is a set of radial basis functions centred 

Figure 4. Model structure. The inputs represented by full 

line arrows are the fixed inputs, which were not selected 

by the MOGA and were always present. The inputs indi-

cated by dashed line arrows represent inputs that can 

be selected by the MOGA. The symbol “Z-1” represents a 

pure time-delay of one sample.

Figure 3. Example of the computed temporal echo-shifts 

as compared with the measured temperatures; a) tempo-

ral echo-shifts obtained for the different spatial locations, 

b) respective measured temperature change signals. P1, P2 

and P3 refer to the phantom locations where temperature 

estimation is performed (see Figure 2).
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at , being d the number of inputs. The basis 
functions are evaluated at points  and are 
weighted by  at the third layer. In this work it is 
applied the commonly used Gaussian basis functions 
(equation 2):

	
(2)

where σi is the spread of the ith function.

Model training and structure selection
The manual selection of the appropriate number of 
RBFNN neurons and the appropriate input set could be 
a high-time consuming task, due to the enormous num-
ber of possible solutions. The multi-objective genetic 
algorithm (MOGA) was used to evolve an initial and 
randomly generated population of models, in order 
to attain well-fitted non-invasive temperature estima-
tions. As shown in Figure 4, the possible model inputs 
that MOGA can select were the lags of TS and ΔT. The 
maximum admissible lag for the input variables was 
considered as 25. This value was selected after studies 
on the temperature signals time-constants (Teixeira et 
al., 2006a). As the models were designed to estimate 
the temperature at different intensities and spatial 
positions, two additional inputs (I(k) and P(k) in Figure 
4) were assigned to help the models to discriminate 
among intensities and spatial points. As these two 
inputs were always present, they were not selected by 
the MOGA. MOGA was allowed to evolve models that 
had a maximum of 20 inputs and a number of neurons 
in the interval [8,20]. This interval was experimentally 
selected after several runs considering wider values. 
In the MOGA loop, each individual must be trained in 
order to compute their parameters and consequently to 
obtain their performance descriptors, for the proposed 
estimation problem. Based on these descriptors, the 
population is ranked and the best models selected to 
create the new generation, by application of genetic 
operators. In this work the neural networks (NNs) 
were trained using a methodology that involves the 
Levenberg-Marquardt (LM) training algorithm and 
the minimization of an error criterion that exploits the 
separability of the parameters in non-linear ( ), 
and linear (b and ), improving the performance 
of the training (Ruano, 2005). The LM optimizes only 
the non-linear parameters, while the linear ones were 
found using the linear least-squares strategy.

As referred before, the search for appropriate 
model structures was formulated as a multi-objective 
optimization problem, where various model perfor-

mance descriptors exist. These descriptors are viewed 
as objectives to minimize, in order to obtain well-fitted 
estimators. In this work, the performance descriptors 
were arranged in three groups: model errors, model 
complexity and model validity tests. The model er-
rors considered were: the root mean square error in 
the training set (MSETR); the maximum mean square 
error in all the test sub-sets (MMSETE), obtained by 
feeding-back the measured temperature values; and 
the maximum absolute error obtained during estima-
tion in all the test sub-sets (MAETE), obtained by feed-
ing-back the estimated temperature values, as desired 
for a non-invasive temperature estimator. The model 
complexity descriptors under minimization were: the 
linear weights norm (LWN) and the total number of 
parameters (equation 3), which is taken as:

	
(3)

where NC is the number of centres, NE is the number 
of inputs, NS is the number of spreads, and NW is the 
number of linear weights. The choice of the LWN to 
minimize is because models with a high LWN usu-
ally are too specialised in the training data, and when 
considering other data sets tend to have an exacerbated 
error. The NP minimization is also important, because 
a good model should present a small error and also a 
small computational complexity, especially when real-
time applications are desired. The model validity tests 
were proposed in Billings and Voon (1986) and used 
with success in similar modelling schemas (Teixeira et 
al., 2006b). These model validity tests involve the com-
putation of first and higher order correlations between 
model inputs, outputs and residuals. In this work, as 
in Teixeira et al. (2006b), only the conditions involv-
ing the first order correlations were used, because the 
results obtained using the higher order correlations 
were not significantly better for the proposed estima-
tion problem. The first-order correlations used were 
(equations 4 and 5):

	 (4)

	
(5)

where Ree(.) is the auto-correlation of the error se-
quence, Rue(.) is the cross-correlation between inputs 
and the error, δ(.) is the Dirac’s delta function, and τ is 
the time-shift or lag parameter associated with the cor-
relation functions. In fact, Rue(.) will never be precisely 
zero for all lags, in this way the equality is considered 
true if the normalised value of Rue(.) lies within the 95% 
confidence limits defined as in equation 6:



148

Generalization assessment of data-driven temperature estimators

C.A.D. Teixeira, A.E.B. Ruano, M.G.C.S.L. Ruano, W.C.A. Pereira

Revista Brasileira de Engenharia Biomédica / v. 23 / n. 2

Brazilian Journal of Biomedical Engineering / v. 23 / n. 2

	
(6)

where N is the number of training patterns. In the 
same way, the value of Ree(.) never equals the delta 
function, but the condition is considered true if the 
normalised value of the error auto-correlation enters 
the 95% confidence limit before lag one.

In order to obtain feasible solutions for a particular 
problem, goals and priorities should be defined for the 
previously referred objectives. The priorities enable the 
definition of relevance between the objectives. MOGA 
runs during a pre-defined number of generations 
evolving the initial randomly generated model popula-
tion. At the end of a complete run, a set of best-fitted 
models, considering the goals and priorities defined, 
was obtained.

Results and Discussion
The MOGA was applied in four different run-types, 
each one corresponding to training and a structure 
selection without data from one of the intensities. The 
MOGA objectives, goals and priorities for the four 
run-types are presented in Table 1.

The error goals presented correspond to the 
normalised data. As previously said, the maximum 
accepted error for a desired estimator in hyperther-
mia/diathermia is 0.5 ºC, that is why the goal was ar-
bitrary set for MMSETE and MAETE as 0.43 ºC (a little bit 
bellow the threshold). If no goal is defined for MSETR, 
the MOGA tries to minimize towards zero, generating 
models too specialized in the training data, resulting 
in bad generalisation performance. It is possible to see 
that the objectives associated with the generalisation 
performance, i.e. the MMSETE and MAETE, were defined 
with priority 2, having in mind the attainment of mod-
els with a good generalisation capacity. The LWN goal 
value was defined based on the maximum number of 
NN neurons defined, and in the data normalisation 

employed. The NP goal value was defined having in 
mind the search space defined.

The MOGA ran during 200 generation of 200 in-
dividuals each. At the end, the best fitted individuals 
were validated in data never applied in the training 
and structure selection. To note that this fresh data 
contains information from the trained and untrained 
intensities, in order to really assess the model’s gener
alisation performance. In Table 2, the maximum abso-
lute errors in the validation data (MAEVL) presented by 
the best individual, in each run type are exposed.

Looking at this table it is possible to observe that for 
trainings and structure selections without the intensi-
ties 0.5, 1.0 and 1.5 W/cm2, the applied methodology 
reaches maximum absolute errors inferior to 0.5 ºC (the 
gold-standard value for hyperthermia/diathermia) in 
the validation data. These intensities are intermediate 
(to note that the null intensity at the beginning and 
final part of each experiment curve is considered a 
intensity level, which makes 0.5 W/cm2 an intermedi-
ate intensity), and the models can overcome the lack 
of their data in the training and structure selection by 
“seeing” data from both the correspondent lower and 
upper intensities. The 2.0 W/cm2 is the upper intensity 
limit, which means that the heating and consequently 
the temporal echo are also upper limits. The lack 
of data from this intensity, during the training and 
structure selection, induces the applied methodology 
to obtain the model parameters with the inferior data 
limits (obtained with the inferior intensities). During 
the validation process, the application of data from 
2.0 W/cm2 results in bad performance (error greater 
than the gold-standard value) because it is out of the 
training and structure selection data domain.

The obtained values for the MOGA objectives for 
the best fitted-model in each of the four run types 
are presented in Table 3. Looking at this table it can 
be said that all the three error goals were fulfilled, in 
particular the high-priority ones, i.e. the MMSETE and 

Table 1. MOGA objectives, goals and priorities for the four run-types. The priorities enable the definition of relevance 
between the objectives.

Objective name MSETR MMSETE MAETE LWN NP Ree(.) Rue(.)

Goal
3.0E-3 3.0E-2 3.0E-2

2.0 200 CI=2.4 E-2 CI=2.4 E-2
(0.043 ºC)* (0.43 ºC)* (0.43 ºC)*

Priority 1 2 2 1 1 1 1
MSETR is the root mean square error in the training set; MMSETE is the maximum mean square error in all the test sub-sets, obtained by feed backing the measured 

temperature values; MAETE is the maximum absolute error obtained in estimation for all the test sub-sets, obtained by feed backing the estimated temperature 

values; LWN is the linear weights norm; NP is total number of parameters; Ree(.) is the auto-correlation of the error sequence; Rue(.) is the cross-correlation between 

inputs and the error. 

* Error goal values in the non-normalised data.  
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MAETE, as expected. The LWN goal was also fulfilled 
by all the four best individuals, showing that a small 
norm is desired for well-performing estimators. The 
goal defined for NP was fulfilled by three of the best-
models, except by the best-model obtained in the run 
without data from 2.0 W/cm2. The results obtained 
at the runs without the intermediate intensities show 
that it is possible to obtain low-complex models that 
present a MAEVL inferior to 0.5 ºC, as desired in real-
time applications. The goals defined for model-validity 
tests (Rue and Ree) were never fulfilled. In the case of Rue, 
the obtained values are close to the defined goal. On 
the other hand, the values for Ree are very far from the 
predefined goal, because the temperature waveforms 
are composed of two parts, an increasing and decreas-
ing part, and the error among the different data sets, 
which compose the total training set, tends to have a 
common pattern (according to temperature increasing 
and decreasing) and the error autocorrelation function 
has high values after lag zero. 

The structure parameters of the best individuals 
are presented in Table 4. Looking at this table, it can 
be said that the value defined for the maximum lag is 
sufficient for the attainment of good models, because 
it appears only two times in the best-models input set 
TS(k-24) in the run without data from 0.5 W/cm2, and 
in ΔT(k-25) in the run without data from 2.0 W/cm2). 
In terms of the number of inputs it can also be said 
that the chosen interval ([2,20]) is sufficient for the 
MOGA to achieve proper models, because the best 
models have inputs between 9 and 13, not converging 
to the maximum number. The bounds defined for the 
number of neurons were also well-chosen given that 
proper models do not have the maximum number of 
neurons. The best-model obtained in the run without 
the application of data from 2.0 W/cm2 presents 18 

neurons, showing that the smaller error obtained 
among the best models in this run-type demanded 
additional processing. On the other hand, an accept-
able result (in terms of practical applications) was 
obtained, without increase in processing, in the runs 
without data from the intermediate intensities, where 
the models “know” the estimation space boundaries, 
and less processing requirements were necessary to 
achieve proper results for all the situations (three 
points and four intensities).

Future real applications encompass the attainment 
of the required error threshold in 1 cm3 of tissue sample, 
as well as treatment duration of about 15-20 min, being 
the heating time per site of 1-2 min (Kitchen, 2003).

In Simon et al. (1998), high intensity focused  
ultrasound (HIFU) was applied to a rubber phantom, 
while BSU signals were collected. As in this work, 
temporal echo-shifts were then computed and applied 
for temperature estimation. The temperature was re-
lated with the derivatives of the temporal echo-shifts 
by means of a linear function. The accuracy of the 
method is assessed at three points (close to the two 
focuses of the HIFU), and using a unique intensity. The 
phantom was heated during 40 s and allowed to cool 
in the next 50 s; a maximum temperature increment 
of 4.22 ºC was reached. It is reported that a maximum 
error of 0.44 ºC was obtained. On the other hand, the 
proposed method in the present paper was validated at 
three different points and at four different intensities, 
which means that 12 operating points were considered 
(4 intensities × 3 points), instead of three (1 intensity × 3 
points) in Simon et al. (1998). In terms of the maximum 
absolute error obtained, the proposed methodology 
reaches a value of 0.34 ºC for the best model built 
without data from 1.5 W/cm2, which is 0.1 ºC less 
than the results pointed in Simon et al. (1998). This 

Table 2. Maximum absolute error in the validation data for the four run types applied.

Intensity excluded from training and structure selection (W/cm2) 0.5 1.0 1.5 2.0

MAEVL (ºC) 0.45 0.42 0.34 0.69

Table 3. MOGA objectives presented by the best-individual, in each of the four run types, as compared with the a-priory 
defined goals.

MOGA Objectives

MSETR MMSETE MAETE LWN NP Ree(.) Rue(.)

In
te

n
si

ty
 

ex
cl

u
d

ed
 

(W
/c

m
2 ) 0.5 2.1E-3 5.0E-3 2.7E-2 0.9 131 9.1E-1 8.5E-2

1.0 1.6E-3 4.2E-3 2.8E-2 1.4 171 9.1E-1 5.3E-2
1.5 6.4E-4 2.4E-3 2.9E-2 1.5 144 9.7E-1 3.3E-2
2.0 2.9E-4 1.1E-3 2.8E-2 1.2 271 9.5E-1 3.7E-2

Goal 3.0E-3 3.0E-2 3.0E-2 2.0 200 CI=2.4E-2 CI=2.4E-2
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accuracy was obtained for a total estimation time of 
35 min (5-min baseline temperature + 15-min heating 
+ 15-min cooling), and for a temperature increment of 
approximately 6 ºC.

Conclusion
The work hereby presented is on the assessment of 
the generalisation capacity of RBFNN, in non-inva-
sive temperature estimation. The applied data-driven 
models were radial basis functions neural networks, 
with structure selected by the multi-objective genetic 
algorithm. The generalization studies performed were 
in function of the therapeutic ultrasound intensity, 
which means that the models were trained and their 
structure selected to perform well in data collected at 
three intensities, and then were validated in data col-
lected at these three intensities and in data from one 
intensity not applied before. The applied methodology 
seems to work well for generalisations in data from 
the intermediate intensities, were maximum absolute 
errors inferior to the gold-standard value (0.5 ºC) ac-
cepted for hyperthermia/diathermia were obtained, 
values which are only competitive with those obtained 
with MRI temperature assessment as reported in litera-
ture. Excluding from training and structure selection 
the data from the extreme intensity, the maximum ab-
solute error in validation is greater than 0.5 ºC, and the 
smaller error is obtained by increasing the processing 
complexity, which is reflected in an increase in com-
putational demand. In runs without the intermediate 
intensities the models were trained and their structure 
selected knowing the estimation space boundaries, 
and inner estimations were obtained with success, in 
a natural way, without increase in processing require-
ments, even in situations not seen in the training and 
structure selection. From the above results it can be 
said that the maximum and minimum data limits must 
be provided during training and structure selection, 
and generalisations must be made inside the domain 

delimited by these data.
The merit of this work is the attainment of well-

fitted estimators, which can overcome the lack of 
data from the intermediate intensities (0.5, 1.0 and 
1.5 W/cm2) in the training and structure selection, 
achieving maximum absolute errors inferior to 0.5 ºC 
in fresh data, collected at all the intensities. Another 
achievement is that both the medium parameters and 
structure were obtained from data, avoiding either 
mathematical simplifications or medium constant 
determination. In comparison with other temporal 
echo-shift based methods, such as the one published 
in Simon et al. (1998), a better accuracy was attained in 
a much more extensive estimation environment.

For the future it is planed to apply the estimation 
methodology to inhomogeneous media, and control 
the therapeutic instrumentation using the best fitted 
models. It is also planed to test the generalization per-
formance of this kind of models, in terms of intensity 
and space, together.
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