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SPECTRAL ANALYSIS OF ULTRASONIC WAVE BACKSCATTERED
FROM A SUSPENSION OF RANDOMLY DISTRIBUTED SPHERICAL PARTICLES

Joao C. Machadol, Akira Ishimaruz, Rubens A. Sigelmann3

ABSTRACT — Several researches have been carried out to investigate
the possibility of tissue characterization by wultrasound. The
investigation can be done in either time or frequency domain. However,
it has been observed that as the acousti¢ wave propagates through the
tissues its attenuation, which is a function of frequency, depends on
the tissue conditions, that is, normal or pathological. The
interaction of the wave and tissue is a complex physical process and
due to this reason we decided to investigate, initially, the inter-
action of ultrasound with a medium where control becomes possible.
This work presents the theoretical formulation for the power spectrum
density of a burst of sine waves backscattered from a random medium
consisting of a suspension of polystyrene spheres (diameter 0.589mm,
standard deviation 0.066mm) in a solution of water and sugar. The
carrier frequency is 1 MHz and the pulse repetition frequency is
1500 Hz. The results obtained for different sizes of the particles
are used in the case with a size distribution. Experimental results
and theoretical predictions agree very well.

INTRODUCTION

There is no question that the improvements of the echo and Doppler ultra-
sonic imaging systems in the last three decades have made a significant
contribution to ultrasonic medical diagnosis. However, progress is still
being made in the techniques of tissue characterization, and it is expected
that their use will continue to increase in medical diagnosis.

It is understandable that several researchers are directing their efforts
to the better understanding of the mechanisms of the interaction between
ultrasound and tissues. In particular, one very important interaction 1is
scattering.

It has been observed that the frequency dependence of the attenuation of
the propagating wave is a function of tissue conditions. This has motivated
many studies in the frequency domain. Among them, Holasek et al. (1973)
developed a system for spectral analysis of ultrasonic scattering from soft
tissued in the frequency range of 1 to 25 MHz. However, instead of using
tissue, they tested their system using a sponge and obtained information
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about the effects of beam spreading and nonlinearities of the acoustic signal
from the results for attenuation. Sokollu et al. (1975) continued the previous
work and compared the results of attenuation, as a function of frequency, for
sponges with those compiled from the literature for liver homogenate. This
reference mentions the utilization of the backscattered signal for the
analysis. However, this presented new problems for spectral identification,
mainly because of gating specific parts of the backscattered signal to
determine spatial information. They found that both the shape and the duration
of the gate caused a great influence in the echo spectra. Chivers and Hill
(1975) described an experimental measuring system using a time-gate to select
the signal backscattered from a particular volume inside soft tissues. They
presented results of the frequency spectra for formalin-fixed samples of human
fat, liver, and spleen in the frequency range 0.5 — 5.0 MHz, They analyzed,
briefly, the limitation and advantages of frequency spectral analysis in
ultrasonic diagnosis. It was mentioned, again, the influence of the duration
of the selecting gate. Lizzi and Laviola (1976) used the spectral analysis of
ultrasonic echoes to characterize structures of the eye and orbit, and their
investigation was carried out on differential diagnosis, utilizing parameters
of backscatter frequency slope, backscatter spectra, and attenuation Spectra.
Kuc, Schwartz and von Micsky (1976) considered that as the acoustic attenuation
constant, in dB/cm, for most soft tissues is known to increase linearly with
frequency in the range 0.3 to 10 MHz, then an ultrasonic pulse with a Gaussian
envelope transmitted through the soft tissue would still maintain the type of
envelope with its spectrum translated on frequency. They performed experiments
on in vitro formalin-fixed human liver tissues, using a carrier frequency of

2 MHz. First, transmission was considered either using two transducers or

only one to transmit and receive the signal reflected on a rigid plane surface
located on the other side of the tissue sample. This caused the wave to travel
twice inside the tissue. They obtained good results and this motivated them to
analyse the signals backscattered from internal tissue structures, since in
practice it becomes extremely difficult to either use direct transmission or
double transmission by means of a reflector plane located on the other side of
the tissue and opposite to the face of the transducer. This is because of the
large attenuation of the acoustic wave as it propagates across the body.
However, the results for backscattering were not as good as for transmission.
It is clear that the possibility of characterizing tissue by ultrasound exists.
The literature has already provided ample experimental evidence.

In this paper we present a theoretical analysis for the power spectrum
density of the backscattered acoustic wave as well as experimental results.
We will consider a pulsed acoustic wave with a carrier frequency of 1 MHz and
8 usec for the duration of the burst incident on a random medium consisting of
a suspension of polystyrene spheres (mean diameter = 0.589 mm, standard
deviation = 0.066 mm) in a solution of water and sugar. We chose the carrier
frequency of 1 MHz because the attenuation of the acoustic wave on this medium
is more sensitive to frequency for values close to 1 MHz.

We consider the random nature of the backscattered wave and analyse the
problem for different values of the duration of the receiving gate and
different positions of the sample volume inside the random medium. We also
consider the size distributions of the particles. Our results, both theoretical
and experimental, refer to the case when first order multiple scattering
phenomena apply and they are in very good agreement.



THEORY

Let us consider an electrical signal uj(t) applied to the transducer.
This generates the acoustic wave pj incident in the random medium
(Figure 1).

The espectral density Wi{(w) for u;(t) is

o«
Wi(w) = J up (0)ed¥" e, (1)
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with j =v- 1 and w = 27f in rad/sec.

The wave pg, backscattered by the random medium, is incident on  the
transducer and an electric signal ug(t) is generated and is given by (see
Ishimaru (1978)).

ug(t) = 7%— J W () H@e It ay , (2)
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where H(w) is a complex random function and called the transfer function for
the random medium which is assumed to be linear and time invariant.

The spatial resolution along the direction of wave propagation is obtained
by gating ug(t). The duration of this gate defines the size dr of the
elementary volume dV, shown in Figure 1.

Calling the gate function by g(t), the received signal v, (t) due to
backscattering from particles in the elementary volume dV is

vo(t) = g(t)ug(t) (3)

This signal vo(t) is a time varying random function and its power spectrum
density, W(w), is given by

Ww) = f < Vot vor(ty) > IO(E1 8 ge ar, )
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where < > represents the ensemble average and * means complex conjugate.

The gate spectral density G(w) is
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Substituting expressions (2), (3), and (5) into (4), we pbtain
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After integration in ty, t2, w'', we get

W) = ()2 f
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j G(w-wl)G*(w-wz)Wi(wl)Wz(wz)<H(w1)H*(w2)>dw1dw2 (8)
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In expression (8), functions G and W; are obtained once uj(t) and the gate
function g(t) are known. It remains only to determine the transfer function
H(w). This function depends on the random medium.

Using Figure 1 and assuming that first order multiple scattering is valid,
then H(w), due to backscattering from the elementary volume dV, is written as
(see Ishimaru (1978))

- o - j2K
H(w) = fe(1,0)fp(-1,1,0)f,(-1,0) S— , pav , 9
(R+r)

where fy(i,w) is the transmitting field pattern, related to the
gain function Gy(i,w) of the transducer by

tife (1,0 fe*(1,0) = oT(E,0) (10)

fr(-f,w) is the receiving field pattern of the transducer,
related to Gy(i,w) as

G E L0 Ep* -0 = 6p(E,0) (11



. m .
with A = 2me and c¢ the wave velocity;

w

fp(—z,z,w) is the backward scattering amplitude of the

particle;
po. T
K=k (R+r) + j 3 (12)
2
k =2m/)x (13)

with p as the particle density number (number particles/unit volume)
and ‘0. as the total cross section of the particle.

EXPERIMENTAL SYSTEM

Figure 2 shows a block diagram describing the experimental setup. The
transducer and chamber were immersed in a water tank. We transmitted a burst
of sine waves with a carrier frequency of 1 MHz and a pulse width of 8 usec.
The receiving gate was delayed by Tq to permit the investigation of the
spectral density related to a sample volume located inside the chamber.
Different positions for the sample volume are analyzed.

A pulse repetition frequency of 1500 Hz was used and by adjusting the
spectrum analyzer to make one scanning from 900 kHz to 1050 kHz during
0.3 sec, with a resolution bandwidth of 1 kHz, three backscattered pulses
were allowed to contribute for every 1 kHz interval in the 150 kHz bandwidth
we analyzed.

We could not use the ideal case of allowing only one backscattered pulse
to contribute to a 1 kHz interval because this would compromise the con-
vergence of the power spectrum density to its average. The number of three
pulses with a resolution of 1 kHz was our best choise.

After every scanning, the spectral density was sent to the microcomputer,
and each component in the frequency was squared. The average for the power
spectral density was calculated after 100 spectral densities were transmitted
to the microcomputer.

Details about the random medium can be found in Machado, Sigelmann and

Ishimaru (1983). We used p as 84 cm™? which insures that first order
multiple scattering 1is valid, as shown in this reference.

APPROXIMATIONS TO THEORETICAL EXPRESSIONS

Now we will make use of our experimental setup and substitute some values
into expression (8) such that simplifications for W(w) become possible. The
applied signal uj(t), to generate a burst of sine waves, is



uj (£) = Re {[U(t+T;/2) - U(t—Ti/Z)]e_jwot} s (14)

where U(t) = 1 for t >0 and 0 for t <0 ,
Wo = 2mf, and f, is the carrier frequency (1 Miz) ,
T; = the width for the transmitted pulse (8 usec) .

From expressions (1) and (14), we obtain Wj(w)

sin[(wao)Ti/Z]
W) =T ——————— (1)
(w-wy)T1/2

The gate used to select the sample region and called g(t) is
g(t) = U(t+Tg/2—Td) - U(e-Tg/2-Tq) , (16)

where Tg is the duration of the-gate and T4 is the delay.

From expressions (5) and (16), we obtain G(w)

sin(wTy/2) .
G(w) = Tg i eJWTd 17)
ng/Z

For Tg’ we used values of 10, 20, and 30 usec.

For the final expression of the power spectrum density, we will use
expression (9) and the geometrical configuration of transducers and chamber
to determine the correlation function of H(w). We consider that the particles
are uncorrelated with each other. Therefore, this gives '

<H(wp)H*(wp)> = f ft(i,wl)f;(i,wz)fp(—i,i,wl)f;(-i,i,wz)
v

. *
er(Kl_KZ)

o £p(-1,0D) £5(-1,uwp) pdv (18)

4
(R+r)
where V is the volume inside the chamber defined by the acoustic beam,
pr

Ki = wi(R+r)/c + j g op (W) (19)

with i =1 or 2
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_We measured the radiation pattern for the transducer in terms of
fe(i,w)fr(~1,w) and this product turned out to have a phase angle almost
independent on the frequency and an amplitude A(w) which is presented in
Figure 3. Laterally, the radiation pattern presented a Gaussian type function.
This permits us to write

2
£ G, Ep(-1,0) = BA(we (28/0p) 1n(D) (20)

where B is a constant of proportionality and 8p is the half-power beam angle.
The volume dV can be written as
dv £ 2m(R+r)?0dedr (21

Then substituting expressions (20)and (21) into (18), we have

“ - - - J—(z:—(wl-wz)R
<H(w1)H*(wy)> = BB*F(eb)fP(—i,i,wl)fg(-i,i,wz)A(wl)A(wz)e

32 w)-wp)r - ~0r (o (w1) 40 (wp))

L
- J e e ar (22)
o (R+r)?
m/2
2
with F(8y) = 2m f e 8(8/8b) 1n(2) g4q (23)
[e]

Now we rewrite expression (8) as

L
W(w) = CE%JZBB*F(eb)pf Tﬁ%;yf J F1(w,r)dw, f F2(w,r)dwy|dr , (24)
o s =
where sin[(w—wl)Tg/Zjeijd sin[(w1-we)Ti/2]
Fi(w,r) = Ty T;
(w-wl)Tg/Z (w1-wp)T;/2

j2
o - == wy (R+r-cTgq/2) ,
o 51,1, wpAwpe PO D (25)
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and F2(w,r) = F’f(uo,r)|ml=w2 (26)

We can simplify expression (24) by noting that both Fi{w,r) and F3(w,r) have
a complex exponential term which is a function of R+r and cTq.

When R+r differs from cTq/2 function F1(F3) is oscillationg around the
axis for wj(wp) and it does not contribute significantly to the integral in
w1 (wp). The main contribution comes when R+r = cTg/2.

Using this to simplify expression (24), we obtain

© ® *
W(w) = (7%)2BB*F(6b) ——é—~? p J Fi(w)dwy j Fi(w)dwy| , @7n
(CTd) P, g
where now
T, sin[(w-wy)Te/2] . T; sin[(w1-wy)T/2]

F(w) = g g ] R i o/ i1

(w-w1)Tg/2 (w1-~wo) T3 /2
o £ (-1, T 0 A e Pt/ 2 RITe () (28)

Expressions (27) and (28) are the simplifications obtained to calculate
to power spectrum density W(w).

To calculate W(w), we developed a Fortran program called SPECRG (TAMP,
DIA(I), SIZEP(I), DENS3, DENSP, LAMBS,LAMB, MIU, OMEGAl, OMEGA2, OMEGAO, TSW,
RGW, RGD, DIST, LENG, RHO) where TAMP = A(w), DIA(I) = ith diameter in the
distribution of the size of the spheres, SIZEP(I) = probability density for
ith diameter, DENS3 (DENSP) = density of solution (particle), LAMBS (LAMB) =
inverse of the compressibility modulus of solution (particle), MIU = shear
modulus of the particle, OMEGA1 (OMEGA2) = lowest (highest) angular frequency
in the bandwith of W(w), OMEGAO = wgs TSW = Ti, RGW = Tg,RGD = Tq, DIST =R,
LENG = L, RHO = p.

RESULTS

The range 0.9 to 1.050 MHz of the power spectrum density W(w) is the most
interesting one. In this frequency band the total cross section Gy changes
very rapidly. As shown in Figure 4, in this range g, and consequently the
attenuation, in dB,depends on the 13th power of the frequency.

Figures 5, 6, and 7 show the experimental and theoretical results for
W(w) normalized to the power spectrum density Wo(w) due to backscattering
from the sample volume SV located inside the chamber at 1.5 cm from its front
face. In each of these figures, the results refer to two different delays in
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the receiving gate which defined sample volumes located at 3 and 6 cm
distant from the front face. '

For the results presented in Figure 5, the receiving gate had a width,
Ty, of 10 pusec and for the results in Figure 6 and 7, the width was 20 and
35 Usec, respectively.

We considered the size distribution of the particles to calculate W(w)
and in Figure 8, we present W(w)/Wy(w) for different sizes, using Tg as 20
Usec and two different delays which defined sample volumes at 3 and 6 cm
distant from the front face.

CONCLUSION

In this work, we developed the formulation to calculate the power
spectrum density for an acoustic wave backscattered from a random medium. The
first order multiple scattering theory and the experimental data agree very
well.

In the literature, many authors normalized their results with respect to
the signal resultant from the reflection of the acoustic wave from a perfect
reflector. We normalized with respect to the signal backscattered from a
volume inside the medium as close to the transducer as possible. With this
normalization, we eliminated the backscattering effects of the random medium;
and therefore, the results reflect the attenuation characteristics of the
wave propagating in the random medium. We point out that no significant
differences were observed in our results for distinct values of the width of
the receiving gate. Although Ot changes with the 13th power of frequency, the
results for the attenuation do not show the same type of dependence.

The random medium discussed in this paper is quite different from
biological tissues. Nevertheless, because this random medium has controllable
particle shape, particle size, particle concentration, length of random
medium propagated by the wave, etc., it is simpler to model. However, even
for this random medium which is simple when compared to biological tissue,
many difficult problems arose. But we were able to explain, successfully, the
mechanism of_interaction between the acoustic wave and the random medium,

As a next step, the investigation must proceed with more realistic models
for biological tissues, and the results should be explained in terms of
scattering theories., These steps should progress up to the point that a
biological tissue becomes used as a random medium. In this case, after
understanding the scattering mechanism by this random medium, then tissue
characterization by ultrasound will be possible.
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Figure 1. Geometry for the spectral analysis of ultrasonic waves
backscattered by elementary volume dV of random medium.
L=15cm, D=9 cm, R = 13.5 cm. Incident_wave is pj,
backscattered wave is pg. The unit vector i is in the
direction of pj.
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Figure 3. Amplitude A(w) of the radiation pattern of the
transducer as a function of frequency in kHz.
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inside the particles and the other considering both
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later consideration, used throughout this paper, is
necessary to explain the dependence of o, to the 13th
power of frequency and for the good agreement between
theoretical and experimental results when the frequency
is about 0.9 MHz or ka = 1 (k = 27/A, a = radius of the
particle).
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Figure 5. Power spectrum density W(w) normalized to the power
spectrum density Wo(w) due to backscattering from the
sample volume SV inside the chamber and distant 1.5 cm
from its front face. Curves A and B are the results
for SV distant 3 and 6 cm, respectively, from the
front face, as a function of frequency in kHz. The
value of Tg was 10 usec.
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Figure 6. Same as in Figure 5, except Tg was 20 psec.

19



0 i
©
c
37
=
\ —_
"33' - ——— EXPERIMENTAL \B
[ ———- THEORETICAL il
-20 R U S N I | L1 ¢ L1
900 970 1050

frequency (kHz)

Figure 7. Same as in Figure 5, except

20

Tg

was 30 jsec.



Or—TT1TT"TT T 1T 11 T
I~ A -
D> T -—_ A
Qg - ____;:::;:::~ B .f:::=
c t\~~ \\: —~ - -1
-— - ~\\~~ \‘\ \\B -
= e e
\B_O/_|O S \\\ ~
N fF 0.55 mm >y N
3 N N v
-~ —_—— 0.60 mm AR AR
= [ ——. 0.65 mm ‘8 Y
R N _
ool T S
900 970 1050

frequency (kHz)
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the results for the sample volume SV distant 3 and
6 cm, repectively, from the front face of the chamber.

The value of Tg was 20 usec.
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ANALISE ESPECTRAL DA ONDA ULTRASSONICA RETROESPALHADA POR UMA
SUSPENSAO DE PARTICULAS ESFERICAS DISTRIBUIDAS ALEATORIAMENTE

RESUMO -- Inumeras pesqu1sas foram realizadas para investigar a possi
bilidade da caracterizagao de tecidos humanos por ultra-som. A inves-
tlgagao pode ser realizada tanto no domlnlo do tempo como no da fre-
quencia. Porem, se observa que a atenuagao da onda aclstica que se
propaga atraves dos tecidos, a qual e fungao da frequencia, depende
das condigoes do tecido, sejam elas normais ou patologicas. A intera-
gao da onda com tecido € um processo fisico bastante complexo e por
esta razao decidimos 1nvest1gar, inicialmente, a 1nteragao da onda
com um meio mais simples e possivel de se controlar.

Este trabalho apresenta uma formulagao tedrica para o calculo da
densidade espectral de potencia de uma salva de ondas acusticas seno1
dais retroespalhadas por uma dlstrlbulgao aleatoria de esferas de po—
liestireno (diametro 0,589 mm e desvio padrao 0,066 mm) suspensas nu-
ma solugao de agua e agﬁcar. A frequencia da portadora do sinal trans
mitido e de 1 MHz e a frequencia de repetlgao do pulso e de 1500 Hz.
0s resultados obtidos para diferentes tamanhos das particulas sao usa
dos no caso em que existe uma dlstrlbu1gao de tamanhos das particulas.
Os resultados experimentais e previsoes teoricas coincidem satisfato-
riamente.
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