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SOME THEORETICAL AND METHODOLOGICAL ISSUES IN THE
SIMULATION OF THE STOCHASTIC ACTIVITY OF A
NEURONAL MODEL

A. F,KOHN and C. !ITIKI

ABSTRACT - Membrane noises, intrinsic or extrinsic, are conspicuous
and widespread entities that have an important role in neuronal
information processing. Studies to elucidate the effects of noise on
nerve cells can be done with relative ease using mathematical models.
Nevertheless, even simple models are shown to require very complicat
ed mathematics whi¢h are valid for very limited conditioms. Computer
simulations are more adequate for these cases but they require a
convenient numerical integration methodology to avoid erroneous or
paradoxical results. It is shown in this work that for a fourth order
Runge-Kutta a reasonable choice is to divide the noise sequence
variance by the step size and to choose the intermediate input value
required at each step equal to the present value. Thereafter, the
methods used to simulate three different colored Gaussian noises are
presented. An approximately 1/f noise was obtained as the output of
an IIR filter excited by white noise. The IIR filter was designed
using the least squares inverse method. Lorentzian noise was generated
by an exact recursive relation. The third type of noise was obtained

by passing white noise through a resonant low-pass filter. The
prototype continuous—-time filter was obtained from the literature and
the corresponding IIR digital approximation was designed by the

impulse response invariance method.

INTRODUCTION
Nerve cells are always subjected to random influences arising from
a multitude of sources. One source is the cell membrane itself (De Felice,
1981) and another are the synaptic inputs. When the latter occur in large

numbers, their net effect at the neuron's trigger zone is a noise-like fluctua
tion in membrane current and potential.

Many authors have approached the problem by studying analytically
the behavior of simple neuronal models subjected to noise (Sugiyama at al, 1970;

Holden, 1976; Tuckwell and Richter, 1978; Ricciardi and Sacerdote, 1979). . A
commonly used model is the leaky integrator (parallel RC) with fixed threshold
subjected to white Gaussian noise current input. Even with these restrictive
conditions the mathematics are rather involved and the obtainable results are
of limited scope. A further step taken by some authorns is to include the
effects of the passive spread of membrane potential variations along the dendrites
down to the trigger zone (Wan and Tuckwell, 19793 Tuckwell and Walsh ,
1983) . Expectedly, the mathematics get even more complicated and again onky

restricted conditions are included in the analysis. Therefore, computer
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simulations seem to be more recommended if a broader analysis is desired and
that is the approach taken in an ongoing research in this laboratory. The
present paper addresses some theoretical and methodological issues related to
the implementation of a simulation program.

THEORETICAL APPROACH TO THE MATHEMATICAL MODEL,
NUMERICAL INTEGRATION

The cell membrane at any point along a neuron in the resting
state may be reasonably well modeled by a parallel association of a resistance
R and 2 capacitance C . The input is membrane current and the output is

membrane voltage. When the membrane voltage reaches a threshold value Vi, the
model's capacitor is instantaneously discharged and to this threshold. crossing
event is associated the generation of an action potential, or spike, for shorts
In spite of its simplicity, this model, often called the leaky integrator
with threshold, has been shown to give good results, for example, in  studies
of neural phase-locking or in experiments where rather long action potential

trains are analyzed to extract average quantifiers such as mean rates and
other statistics (Knight, 1972; Kohn and Segundo, 1983).

Below threshold, the differential equation relating "membrane
potential” x(t) to input current i(t) is: _ N

. d:;t(:t) . x}({t) =it x(to)= x x(t) < Ve, 3 n

where C and R are the model's capacitance and resistance, respectively .
When threshold is reached (x(t)=Vy,), the membrane voltage is reset
instantaneously to X, . Therefore the model is globally nonlinear.

When modeling the effect of a large number of dendritic synapses

on the membrane potential at the trigger zone, the papers found in the

literature use a Gaussian white noise input current. The Gaussian assumption

is reasonable since the superposition of a large number of small, random ,

independent depolarizations and hyperpolarizations may reasonably be  assumed

‘to be normal in a first approximation. The whiteness assumption is not as
reasonable and therefore other spectral shapes will be used in this work.

When i(t) is white noise then rigorously (1) has no mathemat
ical meaning because white noise is not mean square Riemann integrable. De
spite the need for more refined approaches, such as 1Ito stochastic calculus
(Jazwinsky, 1970) we shall use simpler mathematics. It can be shown (Jazwinsky,
1970) that =x(t) is a continuous time continuous state space Markov process
and therefore it is a diffusion process. The conditional or transition probabil
ity density f(y,tlxo,to), t 2 top € R can be computed from the forward
Kolmogorov equation or Fokker-Planck equation (Cox and Miller, 1965):

3f(y,t|xo,to) 3 ’ 1 32
- [amo sl | L S bmore.elne )
ot Jdy 2 ay?
2)
where a(y,t) is the first infinitesimal moment and b(y,t) is the second

infinitesimal mean, defined as
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aly,t) = lin - [E [x(t + at) - x(0) |x(0) = y]]
At>0 K

bly,t) = lim -Ai— [E[(x(t + At) = x(e))?|x(e) = y]]

At~+0
The diffusion process obtained from (1) when i(t) is Gaussian
white noise is the Ornstein-Uhlenbeck process and its infinitesimal moments
are: W
- - L (3)
a(y,t) C R
%
b(y,t) = — (4)
2
C
where Uy and 0; are the mean and constant power spectral density of the

white Gaussian noise input current 1i(t), respectively. Substituting (3) and
(4) in (2) gives the partial differential equation that must be satisfied
by the Ornstein-Uhlenbeck process:

3f(y,t|xot°) ~ up 8f(y,t|xo,to) 1 ny.f(y,tlxo,to)]
—_ 90 == 090 = + (5)
3t c 3y RC dy
2 2
L1 _cr_I 3 f(y,tlxo,to)
2 ¢? ay?
The initial condition for (5) at to is
f(x,tolxo,to) = 8(x - xo)
where x is the initial state of the process. The boundary conditions for
the neuronal model (1) are:
= >
£(V,, t|xo,to) 0 t>
f(— , t|x°,to) =0
where Vth is an absorbing regular boundary and -~ is a natural boundary
(Karlin and Taylor, 1981). The inter-spike interval statistics are the same

as the first passage time T(Vth’xo) statistics because i the input process

is white, and, ii after a spike is generated (i.e., the membrane potential

x(t) reached threshold and was reset to xo) the system's history is lost.

Many papers have dealt with the difficult problem of~obtaining the probability
density function of T(Vth’ xo) either for special cases or using numerical

approximations. A somewhat more manageable problem is the determination of the
mean and variance of the first passage time (Ricciardi and Sacerdote, 1979) .
Therefore, from an analysis of the literature it seems that even for the case
of white noise input it is unfeasible to obtain general expressions for the
inter-spike interval probability density, the auto-intensity function, etc .
For non—white inputs the analytical difficulties increase.

From the foregoing analysis it seems reasonable to say that for
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most of the questions concerning the stochastic behavior of (1) the recommended

approach is numerical integration. Nevertheless, it cannot be overempha
sized that numerical solutions ¢an only give restricted information as they
depend on the choice of particular parameters, while general conclusions are

only possible through mathematics.

A numerical integration procedure replaces the stochastic
differential equation (1) by a stochastic difference equation. The latter can
readily be solved by a digital computer.

Equation (1) can be discretized in time in a straightforward
manner by writing the solution x(t; + h) starting the system from x(t;) ,
where h is the time discretization interval (or integration step). The
resulting equation is

t,+h
~hw 1 ~(eame dw
x(tgn) =e Cxe)+ e P %e Civar (6)
t.
N “ /
where w 4. 1 n(t;)
¢} RC 1

When 1(t) is a white Gaussian noise then n(tj) 1is a white
Gaussian sequence with easily computable mean and variance. Therefore it is a
simple matter to simulate this n(tj) in a digital computer. On the other
hand, if i(t) is colored Gaussian noise, n(tj) will be a colored Gaussian
sequence with an autocovariance sequence which is very unpleasant to compute
analytically. A numerical solution should give good aproximations to the
autocovariance sequence of n(tj) if an expression is known for the autocovari

ance of 1i(t). If the latter autocovariance is difficult to be obtained

(for example if 1i(t) is specified in the frequency domain in a complicated
manner) then statistical estimation procedures could be used. In this work ,

however, a direct numerical solutiom to (1) was chosen instead of the other
cumbersome approaches.

Due to its reasonably good behavior for solving deterministic
problems, a fourth—order Runge-Kutta algorithm was chosen. However, wrong or
paradoxical results are obtained if the algorithm is used without care. One
instance happens when the step size is decreased resulting in a decrease in the
output 's variance. In the limit for h > 0 the output would have zero variance

which is absurd. A similar phenomenon occurs when (1) 1is discretized by
assuming in (6) that i(t) 1is constant between sampling times (Jazwinski,
1970) . In this latter case it can be shown that it is sufficient to divide the
noise variance by the step size h (plus some minor details) to obtain a
perfect discrete-time representation., If a similar proof is tried for the
fourth order Runge-Kutta the mathematics gets unwieldy and hence the adequacy
of dividing the input noise variance was confirmed empirically by rumning many

simulations. Another decision that this integration method required was that
related to the input value i(tj + h/2) needed at an intermediate computation
step. Three choices were tested empirically: i i(tj + h/2) = i(tj); ii
ity + 0/2) = 0.5 Ligey) + i(eg + 1], iii generate a new noise
sample for i(tj + h/2). The first choice gave good results, while the second
and third were not as good (M.B. Joaquim, 1986). Several tests were run

comparing the Runge-Kutta algorithm, using Gaussian white noise input with
variance 0%/h and choice i above, with the exact discrete-time version of
(1) obtained from (6) . The overall differences in their outputs were small,
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A good value for the step size was
found to be 0.05 and it will be the only step size used from now on. However,

a careful comparison of the outputs shows differences in their
microstructure., Simulation runs (an example is given below) showed that
these microstructure discrepancies cause only small errors in the inter-spike
interval statistics. As these are the final descrlptors of interest, the
fourth order Runge-Kutta integration method with noise variance o2/h and
with i(tj + h/2) = i(t;) was considered to be adequate for the purposes

presented before. An example run showing inter-spike interval statistics will
be described in what follows to illustrate the adequacy of the adopted method
©ology. The model described by (1) was simulated with R=C=1 , x4, =0, V¢p =
=1, i(t) white Gaussian noise with mean 0.5 and autocovariance
E f(l(t) ~- 0. 5)(1(t + 1) - 0.5)) = 8(t) . The simulations were rum until 1000
spikes (or Maction potentials") were obtained from (1). The exact integra
tion method with a step size of 0.05 generated a spike-train whose inter-
spike interval had an average 2.4822 and a variance 6.18257. The Runge-Kutta
with the same step size 0.05 and with the white Gaussian sequence having a
variance of 1/0.05 generated a train that had an average interval 2.5768
and a variance 6.55713 . The latter two values are in excess of the former
by 3.87 and 6%, respectively. Fig. 1 shows inter-spike interval histograms
from the trains generated by the two methods: exact (Fig. 1a) and Runge-Kutta
(Fig. 1b). The overall behavior is the same exponential-like figure. There are
small localized differences that have no statistical significance. The good
numerical performance of the integration methodology for the case of white
noise input is expected to apply also for the case of colored noise.

GENERATION OF NOISE SEQUENCES WITH 1/f POWER SPECTRUM

Excitable cells in nature have different types of membrane noise
spectra (De Felice, 1981). One type is the 1/f and the noise is called 1/f
noise or flicker noise. Obviously real-life spectra cannot be 1/f for all . f
as this function diverges for f + 0. So the 1/f power spectral density
should be taken as an approximation to the real spectrum, the latter attaining
a finite peak value as f + 0, A simple method is sought that can generate a

sequence of samples with an approximately 1/f power spectral density. The
computer generates sequences of samples that have an approximately flat
gpectrum. If ome is able to find a simple digital filter that changes the flat
spectrum to something approximately 1/f then the goal has been achieved.
An IIR realization was chosen because it is faster than an FIR. Therefore
the problem is to design an IIR digital filter, with few coefficients, that
has an approximately 1/vf amplitude response (absolute value of the
frequency response). It should be clear that the bilinear transformation
design method is not feasible in this case because: i there is no straight

forward analog filter prototype with a rational transfer function, and, ii the
method's frequency warping is tolerable only for amplitude respomses that have
flat regions.

The least squares inverse design (Oppepheim and Schafer, 1975 )
was judged to be a good method for the problem at hand. The first thing that

is needed in this technnique is the desired impulse response hq(n). The*
desired v1/f amplitude response of the continuous time system follows from a
transfer function 1/vs . The impulse response associated with this transfer
function is (by inverse Laplace transformation) proportional to 1/vt .. The
discrete-time version.was computed-by sampling 1/vt at every 0.0005 s N
which is small enough to cause negligible aliasing in the frequency range from:
0 to 1000 Hz, To keep the fllter simple, a pure auto-regressive filter was.
chosen with only 5 poles. A short computer program calculated the auto—
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correlation sequence of the truncated (to- 1000 samples) impulse response
sequence. Next, a standard Gauss-elimination program was used to find the
filter coefficients as the solution of a set of linear equations, The computed
coefficients of the filter's tramnsfer function H(z) = 1/(1-a1z'1—azz‘2-a3z'3 -

~a,2 % - a 27y vere: ay = 0.36976 , a, = 0.15362 , a = 0.10217 , a,=0.08492,

a. = 0,09452. The resulting filter's amplitude'response and the theoretical
cgaracteiistics are shown in Fig. 2. The error is below 2.5 dB in the frequen
cy range from £ /384 wup to (3/8)f_ where f§ ig’ the sampling rate. If

‘degired, this erfor could be reduced by choosing an ARMA filter or a higher
order AR filter, but the approximation obtained by the 5 pole AR filter
was deemed adequate for the purposes of the simulation problem. )

All the noises used in the simulations were normally distributed.
They were generated using the method of Box and Muller (1958) applied on the
uniformly distributed white sequence available from the computer. The digital
filtering of a white Gaussian sequence produces another Gaussian sequence but
with a different power spectral density. ’

GENERATION OF LORENTZIAN NOISE

This type of noise, generated spontanecusly by the cell's membrane
or due to multigle sgnaptic bombardment, has a low-pass power-spectrum propor
tional to 1/(w* + a®). The power spectral demsity of an Ornstein-Uhlenbeck
process has such a description and this fact is used in this work for the
generation of such a noise sequence.

Due to space limitations, we shall only sketch the derivation of
the difference equation that generates "Ornstein-Uhlenbeck sequences”.

An Ornstein-Uhlenbeck process is generated by (1) with Vth= 4+
and white Gaussian noise input, It can be shown that its mean is

“two W Wt
E [x(t)] = xe + (1-e ) 7
[} Cwo :
where ui = E [i(t)]
and its autocovariance function is
' -Tu, -2t
ACV__(t,t+1) = e %1-e Yy 3 T>0 (8)
xx 2
2. C
(o]
The discrete time system that will generate Ornstein-Uhlenbeck

sequences {w(n)} has the general description

w(n+l) = a w(n) + b u(n) + gH; s w(0) = X (9)

where: u(n) is a white Gaussian sequence with zero mean
and variance o2
uy is a conmstant input equal to E [i(t)]

a, b and g are to be determined.
The determination of a, b and g is based on the fact that both the coatinu
ous time and the discrete time Ornstein-Uhlenbeck processes are Gaussian and
therefore fully described by their mean and autocovariance. Writing out the '
general solution of (9) it can be shown that
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ak—l

] k -1 (10)
. - +
E [w(k)] a’x +*gu ——=
and '
2_2 ~mh) -2khw
ACV  (k,k+m) = b _ e % - e °) ;s k>0 Qn
ww 'Zhﬂ)o
l-e
The time instant 't corresponds to the discrete-time kh and T
to wmh. Comparing (7) wlth (10) and (11) the following relations are
obtained:
_mo
a=e (12)
~hw
1-e °
g - (13)
o
-zm")
p=Yl-e (14)
C‘VZwO
Expressions (13) and (14) are not in a final form, because
every new cut-off frequemcy w_ that is chosen will result in a different
asymptotic constant value for w(m).
This can be more easily seen by looking dt ‘the expression of the

asymptotic value in (7):

M.
i )] = ==
a2 [0l -

This value should not vary when the cut off frequency is changed.

Therefore one should keep R=l constant and vary C in order to get the
desired cutt-off frequency. The following expressions result:
C = 1 (15)
W, .

—'hmo

g= 1- e _ 16)
s |

b = 1-e (o) a7

V2
Therefore equations (9), (12), (16) and (17) programed in a
digital computer will generate exact samples from a continuous-time Ornstein-
Uhlenbeek process. This same results might have been obtained by starting

from equation (6) .

GENERATION OF NOISE FILTERED BY A QUASI-ACTIVE MEMBRANE

The classical passive dendritic tree.model has a low-pass type
transfer function with a flat passband. The transfer function is taken between
a current injected at any point along the tree and the result:l.ng trigger zone
current. This transfer function is reasonably well approximated, within an
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appropriate frequency band, by a first order low-pass filter. 'However, this
passive dendritic behavior is not a general finding in meurophysiology. The
phenomenon of resonance is well documented in the biophysical literature and
in this case the membrane may be said to be in a quasi-active state. Koch
(1984) linearized the Hodgkin-Huxley equations and then found the frequency
response of an infinite length cable. The overall shape of the amplitude
response was low-pass,exhibiting a resonance at about 70Hz. His Fig. 6 is
reproduced here in Fig. 3a and used in this work as a paradigm transfer
function to be implemented in the computer simulations. The high frequency

asymptote increases with w (derived theoretically). Between 400 and 800 Hz it
is about - 8 dB/octave. The measured Q (quality factor) of the resonance
peak is about 1. As the resonance peak amplitude of a second order low—-pass
system with Q=1 is much smaller than that seen in Fig. 3a, a low-frequency
zero has to be added. The resulting two-pole~one-zero approximation has an
impulse response that shoots up instantaneously at t=0 and then decays, which
is quite different from Koch's findings (Fig. 3d). A first order transfer
function is then subtracted from the two-pole-one-zero transfer function ,
resulting in very good time and frequency domain fittings to Koch's results
(see Figs. 3b and 3c). The final transfer function is:

H(s) = 1282.11224s +°247082.82 1200 Q8)

s2 + 453s + 205209 s+5000

For frequencies between 400 and 800 Hz the asymptote is -6 dB/octave. For
higher frequencies (less than 12 KHz) it is - 12 dB/octave.

The next step was to implement a discrete time approximation to

(18). Again an IIR digital filter was chosen due to its faster operation.

The bilinear transformation method is not recommended as it will cause deforma

tions in the amplitude response. The impulse response invariance design method

was considered to be adequate because its only distortions arise from alias

ing. If the discretization interval is sufficiently small, aliasing can
be neglected.

. The first term in the right of equation (18) has the general
expression:

Hl(s) = a s+b
s2+ cs + d
with a = 1282.11224
b = 192.71544
¢ = 453
d = 205209

and has a partial fraction expression

- g*
Hl(s) 8 [_s-%p—- * s—p*:l

where —
b = -c + jV4d - 2 , pk= —c - j V4d - ¢* (19)
2 2

1L, .. (/2 -b
g= 5+ jl—%——)
2 ‘/4d-c2

The corresponding H(z) wusing the impulse response invariance
design is (Oppenheim and Schafer, 1975)

(20)
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*

H.(z) = a £___ + £ 2n
1 : 1 - ePT, ; 1- ep*Tz 1

where T is the time discretization interval or sampling period.

As (21) has complex parameters its digital computer implementa
tion requires operations with complex numbers which slows down the computing
speed. Equation (21) is therefore changed to have only real parameters:

*er -1
g - (g e? T+ gx PNy ™ 4 g (22)
- *)T -
1-(PT+ ep*T)z 1, e(p+p )Tz 2

Hl(Z) = a

Substituting equations (19) and (20) into (22) and redefin
ing the parameters one obtains the following expression that is in a form
suitable for numerical computations:

-1 :
1-2"q; [, + g, sintey)] (23)
Hl(z) = a =) =
1-z quq3 + z 95
with
q, = f4d-c?
c
3 T
9 = e
q
o
i = —7 T
q; = cOS(qz)
c - 2b
9 q
-cT
The complete transfer function is obtained by adding the term
corresponding to the second term in the right side of (18):
-1
H(z) = H,(2) - a/(1-z "8) (24)
where o = 1200
-5000T
B=e
The realization consists of a parallel association of a second

order and a first order system.

A comment is needed on the choice of T . The continous-time trans
fer function (18) has a resonance at about 70Hz. The sampling interval T for
the impulse response invariant design should be small enough to make the
aliasing small. On the other hand, the simulated continuous time system has
normalized time and frequency variables. The sampling interval for this normal
1ized system (1) is 0,05, as already pointed out before. If the resonance

peak in the normalized frequency scale is ffes then the sampling interval 1is
0,05
T « —2Y) £
70 res
As an example, take a neurophysiologically relevant value
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freg = 0:32 , so T = 2,2857x 104 . In other words, the sampling rate foy
converting (18) into (24) 1is 4375Hz which is clearly high enough to minj
mize aliasing effects. Besides the value f,, = 0-32 , other two values, 0.98
and 0.16 , will be used in the simulations. For these, the sampling rate is
even higher, therefore causing no aliasing distortions.

SIMULATION OUTPUTS

In the simulation system that was developed, the simplest output.
of a simulation of (1) shows the membrane voltage as a function of time and

the associated spikes that occur every time the threshold 1is crossed (see
Fig. 1). This output is useful to give a feeling of the rate and pattern of
spike generation.

Most of the interesting information is obtained from the spike
train itself and hence statistical analyses are applied to the associated
point processes (Moore et al, 1966). The following statistics are provided

by the simulation system: mean interval, interval standard deviation, interval
histogram (see Fig. 2), autocorrelation histogram, scatter plot of the (i+j)th
interval x (i)th interval (jez*).
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{a) ] (b)

1000 spikes 1000 spikes

Fig. 1 - Inter-spike interval histograms for exact (a) and Runge-Kutta
numerical method (b). ’

()

Fig. 2 - Amplitude response of IIR approximation (solid line) to
theoretical 1/Vf response (broken line).
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Fig. 3 - Amplitude response of Koch's (1984) cable transfer function (a)
and of the third order linear approximation (b). Impulse response

of the approximation (c) and the original impulse response
(d) of Koch (1984).
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