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SOME THEORETICAL ANO METHODOLOGICAL ISSUES IN THE
SIMULATION OF THE STOCHASTIC ACTIVITY OF A
NEURONAL MODEL

A. F. KOHN "lnd C. :ITIK;I:

ABSTRACT - Membrane noises,intrinsic ar extrinsic, are conspicuous
and widespread entities that have an important role in neuronal
information processing. Studies to elucidate the effects of noise on
nerve cells can be dane with relative ease using mathematical models.
Nevertheless, even simple models are shown to require very complicat

ed mathematics which are valid for very limited conditions. Computer
simulations are more adequate for these cases but they require a
convenient numerical integration methodology to avoid erroneous ar
paradoxical results. It is shown in this work that for a fourth arder
Runge-Kutta a reasonable choice is to divide the noise sequence
variance by the step size and to choose the intermediate input value
required at each step equal to the present value. Thereafter, the
methods used to simulate three different colóred Gaussian noises are
presented. An approximately l/f noise was obtained as the output of
an IIR filter excited by white noise. The IIR filter was designed
using the least squares inverse method.Lorentzian noise was generated
by an exact recursive relation. The third type of noise was obtained
by passing white noise through a resonant low-pass filter. The
prototype continuous-time filter was obtained from the literature and
the corresponding IIR digital approximation was designed by the
impulse response invariance method.
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(De Felice,
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Nerve cells are always subjected to random influences
a multitude of sources. One source is the cell membrane itself
1981) and another are the synaptic inputs. When the latter occur in
numbers, their net effect at the neuron's trigger zone is a noise-like
tion in membrane current and potential.

Many authors have approached the problem by studying analytically
the behavior of simple neuronal models subjected to noise (Sugiyama at aI, 19iO;
Holden, 1976; Tuckwell and Richter, 1978; Ricciardi and Sacerdote, 1979). . A
commonly used model is the leaky integrator (parallel RC) with fixed threshold
subjected to white Gaussian noise current input. Even with these restrictive
conditions the mathematics are rather involved and the obtainable results are
of limited scope. A further step taken by some autho~ is to include the
effects of the passive spread of membrane potential variations along the dendrl"tes

down to the trigger zone (Wan and Tuckwell, 1979; Tuckwell and Walsh ,
1983). Expectedly, the mathematics get even more complicated and agairi only
restricted conditions are included in the analysis. Therefore, computer
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simulations seem to be more recommended if a broader analysis is desired and
that is the approach taken in an ongoing research in this laboratory. Ihe
present paper addresses some theoretical and methodological issues related to
the implementation of a simulation programo

THEORETICAL APPROACH TO THE MATHEMATICAL MODEL.
NUMERICAL INTEGRATION

The cell membrane at any point along a neuron in the resting
state may be reasonably well modeled by a paraIleI association of a resistance
R and a capacitance C • Ihe input is membrane current and the output is
membrane voltage. When the membrane voltage reaches a threshold value Vth the
model's capacitor is instantaneously discharged and to this threshold crossing
event is associated the generation of an action potential, or spike, for short~

In spite of its simplicity, this model, often called the leak~ integrator
with threshold, has been shown to give good results, for example, ~n studies
of neural phase-locking or in experiments where rather long action potential
trains are analyzed to extract average quantifiers such as mean rates and
other statistics (Knight, 1972; Kohn and Segundo, 1983).

Below threshold, the differential equation relating
potential" x(t) to input current i(t) is:

''membrane

C dx(t) + x(t) = i(t)
dt R

(1)

where C and R are the model's capacitance and resistance, respectively
When threshold is reached (x(t)=Vth), the membrane voltage is reset
instantaneously to Xo • Therefore the model is globally nonlinear.

When modeling the effect of a large number of dendritic synapses
on the membrane potential at the trigger zone, the papers found in the

literature use a Gaussian white noise input current. The Gaussian assumption
is reasonable since the superposition of a large number of small, random ,
independent depolarizations and hyperpolarizations may reasonably be assumed
to be normal in a first approximation. The whiteness assumption is not as
reasonable and therefore other spectral shapeswill be used in this work.

When i(t) is white noise then rigorously (1) has no mathemat
ical meaning because white noise is not mean square Riemann integrable. De

spite the need for more refined approaches, such as Itô stochastic calculus
(Jazwinsky, 1970) we shall use simpler mathematics. It can be shown (Jazwinsky,
1970) that x(t) is a continuous time continuous state space Markov process
and therefore it is a diffusionprocess. The conditional or transition probabil
ity density f(y,tlxo,to), t ~ to e R can be computed from the forwar~

Kolmogorov equation or Fokker-Planck equation (Cox and Miller, 1965):

af(y,tlxo,to) a [ ] 1 a2 [
------ =-- a(y,t).f(y,tlx ,t) + - - b(y,t)f(y,tlx ,t)l

at ay o o 2 ay2 o oJ
(2)

where a(y,t) is the first infinitesimal moment and b(y,t) is the
infinitesimal mean, defined as
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a(y, t) = lim
1 [E [X(t + l:It) - x(t) !x(t) = y]

l:It-+O 7rt

b (y, t) = lim 1 [E [ (x(t + l:It) - x(t»2 Ix(t) = yJJ
l:It-+O 7rt

(3)

(4)

Gaussian
moments

1
'RC ya(y,t)

b (y, t)

The diffusion process obtained from (1) when i(t) is
white noise is the Ornstein-Uh1enbeck process and its infinitesimal
are:

(3) and
satisfied

are the mean and constant power spectra1 density ofwhere \lI and o~

white Gaussian noise input current i(t), respective1y .• Substituting
(4) in (2) gives the partia1 differentia1 equation that must be
by the Ornstein-Uh1enbeck process:

the

ay

af(y,tlx t )
o o

at

af(y,tlx ,t ) 1____"'0_"'0_ + __

RC ay
(5)

The initia1 condition for

1 0 2
I

+ -
2 C2

(5) at t is
o

a 2f(y,tlx ,t )o o

f(x,t Ix ,t ) = o(x - x )o o o o

where x is the initia1 state of the processo The boundary conditions for
the neur8na1 mode1 (1) are:

o t > t
o

f(-oo , tlx ,t ) = Oo o

where Vth is an absorbing regular boundary and is a natural boundary

(Kar1in and Taylor, 1981). The inter-spike interva1 statistics are the same
as the first passage time T(Vth,xo) statistics because i the input process

is white, and, 11 after a spike is generated (i.e., the membrane potentia1
x(t) reached thresho1d and was reset to x) the system's history is 10st.

o
Many papers have dea1t with the difficu1t prob1em of'obtaining the probabi1ity
density. function of T(Vth' xo) either for specia1 cases or using numerica1

approximations. A somewhat more manageab1e prob1em is the determination of the
mean and variance of the first passage time (Ricciardi and Sacerdote, 1979)
Therefore, from an ana1ysis of the 1iterature it seems that even for the case
of white noise input it is unfeasib1e to obtain general expressions for the
inter-spike interva1 probabi1ity density, the auto-intensity function, etc
For non-white inputs the ana1ytica1 difficu1ties increase.

From the foregoing ana1ysis it seems reasonab1e to say that for
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most of the questions concerning the stochastic behavior of (Í) the recommended
approach is numericaI integration. Nevertheless, it cannot be overempha

sized that numericaI soIutions Can only give restricted information as they
depend on the choice of particular parameters, while general conclusions are
only possible through mathematics.

A numericaI integration procedure replaces the stochastic
differentiaI equation (1) by a stochastic difference equation. The Iatter can
readily be soIyed by a digital computer.

manner by
where h
resulting

Equation
writing the
is the time
equation is

(1) can be discretized in time in a straightforward
soIution x(ti + h) starting the system from x(ti),
discretization intervaI (or integration step). The

fh-hw i e-(ti+h)Wo
Àw

x(t
i
+h ) o x(t i ) + °i(À)dÀ (6)= e e

t.
\ l. I

~ 1 V
where w RC n(ti)

°

white
it is a

other
Gaussian

compute
the

autocovari
obtained

complicated
this work,
of the other

When i(t) is a white Gaussian noise then n(ti) is a
Gaussian sequence with easily computable mean and variance. Therefore
simple matter to simulate this n(ti) in a digital computer. On the
hand, if i(t) is colored Gaussian noise, n(ti) wiII be a colored
sequence with an autocovariance sequence which is very unpleasant to
analytically. A numericaI soIution should give good aproximations to
autocovariance sequence of n(ti) if an expression is known for the

ance of i(t). If the Iatter autocovariance is difficult to be
(for example if i(t) is specified in the frequency domain in a
manner) then statisticaI estimation procedures could be used. In
however, a direct numericaI soIution to (1) was chosen instead
cumbersome approaches.

Due to its reasonably good behavior for soIving deterministic
problems, a fourth-order Runge-Kutta aIgorithm was chosen. However, wrong or
paradoxicaI results are obtained if the aIgorithm is used without care. One
instance happens when the step size is decreased resulting in a decrease in the
output 's variance. In the Iimit for h ~ O the output would have zero variance

which is absurdo A similar phenomenon occurs when (1) is discretized by
assuming in (6) that i(t) is constant between sampling times (Jazwinski,
1970). In this Iatter case it can be shown that it is sufficient to divide the
noise variance by the step size h (plus some minor detaiIs) to obtain a
perfect discrete-time representation. If a similar proof is tried for the
fourth order Runge-Kutta the mathematics gets unwieldy and hence the adequacy
of dividing the input noise variance was confirmed empiricaIly by running many
simulations. Another decision that this integration method required was that
related to the input value i(ti + h/2) needed at an intermediate computation
step. Three choices were tested empirically: i i(ti + h/2) = i(ti); ii
i(ti + h/2) = 0.5 Ci(t·) + i(ti + 1)J; iii generate a new noise
sample for i(ti + h/2Y. The first choice gave good results, while the second
and third were not as good (M.B. Joaquim, 1986). SeveraI tests were run
comparing the Runge-Kutta aIgorithm, using Gaussian white noise input with
variance a 2 /h and choice i above, with the exact discrete-time version of
(1) obtained from (6) • The overaII differences in their outputs were smaII.
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A good value for the step size was
found to be 0.05 and it willbe the only step size used from now on. However,
a .careful comparison of the outputs shows differences in their
microstructure. Simulation runs (an example is given below) showed that
these microstructure discrepancies cause on1y sma11 errors in the inter-spike
interva1 statistics. As these are the final descriptors of interest,the
fourth order Runge-Kutta integration method with noise variance a 2 /h and
with i(ti + h/2) = i(ti) was considered to be adequate forthe purposes
presented before. An example run showing inter-spike interval statistics w111
be described in what fo11ows to i11ustrate the adequacy of the adopted method
:ology. The mode1 des cribed by (1) was s imu1ated wi th R=C=l, X o = O, Vth ;;

= I, i(t) white Gaussian noise with mean 0.5 and autocovariance
E [(i(t) - 0.5)(i(t + T) - 0.5~ = Õ(T) • The simu1ations were run unti1 1000
spikes (or "action potentia1s") were obtained from (1). The exact integra
tion method with a step size of 0.05 generated a spike-train whose inter=
spike interval had an average 2.4822 and a variance 6.18257. The Runge-Kutta
with the same step size 0.05 and with the white Gaussian sequence having a
variance of 1/0.05 generated a train that had an average interval 2.5768
and a variance 6.55713. The latter two values are in excess of the former
by 3.8% and 6%, respective1y.Fig. 1 shows inter-spike interval histograms
from the trains generated by the two methods: exact (Fig. la) and Runge-Kutta
(Fig. lb). The overall behavior is the same exponentia1-like figure. There are
sma11 localized differences that have no statistica1 significance. The good
numerical performance of the integration methodo10gy for the case of white
noise input is expected to app1y a1so for the case of co10red noise.

GENERATION OF NOISE SEQUENCES WITH 1ff POWER SPECTRUM

Excitable ce11s in nature have different types of membrane noise
spectra (pe Fe1ice, 1981). One type is the l/f and the noise is ca11ed l/f
noise or flicker noise. Obviously rea1-1ife spectra cannot be l/f for alI f
as this function diverges for f + O. So the l/f power spectra1 density
should be taken as an approximation to the real spectrum, the 1atter attaining
~ finite peak va1ue as f + O. A simp1e method is sought that can generate a
sequence of samp1es with an approximate1y l/f power spectra1 density. The
computer generates sequences of samples that have an approximately flat
spectrum. If one is able to find a simple digital filter that changes the flat
spectrum to something approximately l/f then the goal has been achieved.
An IIR realization was chosen because it is faster than an FIR. Therefore
the problem is to design an IIR digital filter, with few coefficients, that
has an approximately l/If amplitude respouse (absolute value of the
frequency response). It should be clear that the bilinear transformation
design method is not feasible in this case because: i there is no straight
forward analog filter prototype with a rational transfer function, and, ii the
method's frequency warping is tolerable only for amplitude responses tha~ have
flat regions.

The least squares inverse design (Oppenheim and Schafer, 1975 )
was judged to be a good method for the problem at hand. The first thing that
is needed in this technnique is the desired impulse response hd(n). The"
desired ll7f amplitude response of the continuous time system follows from a
transfer function l/Is • The impulse response associated with this transfer
function is (by inverse Laplace transformation) proportional to l/It. The
discrete-time version,was compute~y sampling l/It at every 0.0005 s ,
which is small enough to cause negligible aliasing in the frequency range. from
O to 1000 Hz. To keep the filter simple, apure auto-regressive filter was.
chosen with only 5 poles. Ashort computer program calculated the auto-

I
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correlation sequence of the truncated (to 1000 samples) impulse response
sequenee. Next, a standard Gauss-elimination program was used to find the
filter eoefficients as the solution of a set of linear equations. The computed
coefficients of the filter's transfer function H(z) - 1/(1-alz-l~a2z-2-a3z-3 -

-à
4
z-4 - a

5
z-S) were: al - 0.36976 , a2 - 0.15362, a3 - 0.10217 , a4·0~08492,

a • 0.09452. The resulting filter's amplitude response and the theoretical
~aracteiistics are shown in Fig. 2. The error is below 2.5 dB in the frequé~
cy range from f /384 up to (3/8)f where f, is' the sampling rate. If
de,ired, this erfor could be reduce3 by ChOOS1ng an ARMA filter or a higher
order AR filter, but the approximation obtained by tlle 5 pole AR filter
was deemed adequate for the purposes of the simulation problem.

Ali the noises used in the simulations were normally distributed.
They were generated using the method of Box and Muller (1958) applied on tha
uniformly distributed white sequence available from the computer. The digital
filtering .of a White Gaussian sequence produces another Gaussian sequence but
with a different power spectral density.

GENERATION OF LORENTZIAN NOISE

(7)E [x(t)] -

This type of noise, generated spontaneausly by the cell's membrane
or due to multifle sInaptic bombardment, has a low-pass power-spectrum . propo~
tional tol/(w + a ). The power spectral density of an Ornstein-Uhlenbeck
proeess has such a description and this fact is used in this work for the
generation of such a noise sequence.

Due to space limitations, we shall only sketch the derivation of
the difference equation that generates "Ornstein-Uhlenbecksequences".

An Ornstein-Uhlenbeck proéess is generated by (1) with Vth- ~
and white Gaussian noise input. It can be shown that its mean is

-ti» lJ i -ui t
x e O + (1 _ e o)
o Cwo

where lJ. - E [i(t)]
1

and its autocovariance function is

(8)

Ornstein-Uhlenbeck

T > O
-TI» -2w t

0(1 _ e O)0 2
----e

2w C2
O

The discrete time system that will generate
sequences {w(n)} has the general description

w(n+l) - a w(n) + b u(n) + glJi ; w(O) - xo

where: u(n) is a white Gaussian sequence with zero mean
and variance 0 2

lJ i is a constant input equal to E [i(t)]

a, b and g are to be determined.
The determination of a, b and g is based op. the fact that both the continu
ous time and the discrete time Ornstein-Uhlenbeck processes are Gaussian and
therefore fully described by their mean and autocovariance. Writing out the
general solution of (9) it can be shown that
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E [w(k)] ..
k-la -1
a-I

(lO)

and

ACV (k,k+m)"ww k> O

-blll
O

The time instant
to mh. Comparing (7) with
obtaÍlied:

-blll
a .. e O

1 - eg .. --"---"--
Cwo

t corresponds to the discrete-time kh and
(10) and (11) the fo11owing relations

T
are

(12)

(13)

b

C~
( 14)

Expressions (13)
every new cut-off frequency
asymptotic constant value for

and (14) are not in a final form,
w that is chosenwill result in a
S(n) •

because
different

This
asymptotic value

lim
t-+<>!>

can be more easily seen by looking átthe expression of
in (7):

E [x(t)] =~Cwo

the

This value should not vary when the cut off frequency is
Therefore one should keep R-I constant and vary C in order to get
desired cutt-off frequency. The following expressions result:

c .. 1
Wo

-blll
1 - O

g = e

y{- -2hw ;:;:o
b .. e

J2

changed.
the

(15)

( 16)

( O)

Therefore equations (9), (12), (16) and (17) programed in a
digital computerwill generate exact samples from a continuous-time Ornstein
Uhlenbeek processo This same results might have been obtained by starting
from equation (6) • .

GENERATION OF NOISE FILTERED BY A QUASI-ACTlVE MEMBRANE

The classical passive dendritic tree.model has a low-pass type
transfer function with a flat passband. The transfer function is taken between
a current injected at any point along the tree and the resulting trigger zone
current. This transfer function is reasonably well approximated, within an
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appropriate frequency band, by a first order low-pass fi1ter. 'However, this
passive dendritic behavior is not a general finding in neurophysio1ogy. The
phenomenon of resonance is wel1 documented in the biophysica1 1iterature and
in this case the membrane may be said to be in a quasi-active state. Koch
(1984) 1inearizedthe Hodgkin-Hux1ey equations and then found the frequency
response of an infinite 1ength cab1e. The overa11 shape of the amplitude
response was low-pass,exhibiting a resonance at about 70Hz. His Fig. 6 is
reproduced here in Fig. 3a and used in this work as a paradigm transfer
function to be imp1emented in the computer simu1ations. The high frequency
asymptote increases with w (derived theoretica11y). Bétween 400 and 800 Hz it
is about - 8 dB/octave. The measured Q (qua1ity factor) of the resonance
peak is about 1. As the resonance peak amplitude of a second order low-pass
system with Q=l is much sma11er than that seen in Fig. 3a, a low-frequency
zero has to be added. The resu1ting two-po1e-one-zerq approximation has an
impu1se response that shoots up instantaneous1y at t=O and then decays, which
is quite different from Koch's findings (Fig. 3d). A first order transfer
function is then subtracted from the two-pole-one-zero transfer function ,
resu1ting in very good time and frequency domain fittings to Koch's resu1ts
(see Figs. 3b and 3c). The final transfer function is:

H(s) = 12~2.11224s+247082.82 1200 (18)
s + 453s + 205209 s+5000

For frequencies between 400 and 800 Hz the asymptote is -6 dB/octave. For
higher frequencies (less than 12 KHz) it is - 12 dB/octave.

The next step was to imp1ement a discrete time approximation to
(18). Again an IIR digital fi1ter was chosen due to its faster operation.
The bilinear transformation method is not recommended as it wi11 cause deforma
tions in the amplitude response. The impu1se response invariance designmethod
was considered to be adequate because its on1y distortions arise from alias

ing. If the discrétization interva1 is sufficient1y sma11. a1iasing can
be neg1ected.

The first term in the right of equation (18) has the general
expression:

s+b

S2+ cs + d

with a = 1282.11224
b 192.71544
c = 453
d = 205209

and has a partia1 fraction expression

r~ g*]
[s-p + s-p*

where

p = p* (19)

g _ ! + j( (c/2) - b

2 /4d-c2

The corresponding H(z) using the impu1se response
design is (Oppenheim and Schafer, 1975)
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(22)

(21)

redefin
fom

[;
g gll\: ]Hl (z)· a 1 + *T 1

1 - ePTz- 1 - eP z-

where T is the time discretization interval or sampling period.

As (21) has complex parameters its digital computer implement~

tion requires operations with complex numbers which slows down the computing
apeed. Equation (21) ia therefore changed to have only real parameters:

f
* .1]

a
g - (g eP. T + g* ePT)z- + gll\:H

l
(z) •

l-(ePT+ eP*t)z-l + e(p+p*)Tz-2

Substituting equations (19) and (20) into (22) and
ing the parameters one obtains the following expression that is in a

suitable for numerical computations:

(23)

with

cos (q2)

c - 2b
qo

-cT
e

The complete transfer function is obtained by adding the
corresponding to the second term in the right side of (18):

-1
H(z) = Hl (z) - a/(l-z B)

term

(24)

where a = 1200
B e-Sooor

secondThe realization consists of a paraIleI association of a
order and a first order system.

A comment is needed on the choice of r . The continous-time trans
fer function (18) has a resonance at about 70Hz. The sampling interval r for
the impulse response invariant design should be small enough to make the
aliasing small. On the other hand, the simulated continuous time system has
normalized time and frequency variables. The sampling interval for this normal

ized system (1) is 0.05, as already pointed out before. lf the resonance
peak in the normalized frequency scale is f· then the sampling interval is

O 05 res
r • """'75- f·res

As an example, take a neurophysiologically relevant value
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f~es • 0.32 ,so T· 2.2857x 10-4 • In other words, the samp1ing rate
converting (18) into (24) is 4375Hz which is c1ear1y high enough to
mizê aliasing effects. Besides the va1ue frese 0·32 , other two va1ues,
and 0~16, wi11 be used in the simu1ations. For these, the samp1ing rate
even higher, therefore causing no a1iasing distortions.

SIMULATION OUTPUTS

for
mini
0.08

is

a

normal

In the simu1ation system that was deve10ped, the simp1est output .
of a simu1ation of (1) shows the membrane vo1tage as a function of time and
the associated spikes that occur every time the thresho1d is crossed (see
Fig. 1). This output is usefu1 to give a fee1ing of the ~ate and pattern of
spike generation.

Most of the interesting information is obtained from the spike.
train itse1f and hence statistica1 ana1yses are app1ied to the associated
point processes (Moore et a1, 1966). The fo110wing statistics are provided
by the simu1ation system: mean interva1, interva1 standard deviation, interva1
histogram (see Fig. 2), autocorre1ation histogram, scatter p10t of the (i+j)th
interva1 JC (i)th interva1(j€Z+).
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(a)

1000 spikes 1000 spikes

Fig. 1 - Inter-spike interva1 histograms for exact (a) and Runge-Kutta
numerica1 method (b).
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Fig. 2 - Amplitude response of IIR approximation (solid 1ine) to
theoretical1/lf response (broken 1ine).
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Fig. 3 - Amplitude response of Koch's (1984) cable transf~r function (a)
and of the third order linear approximation (b). Impulse response

of the approximation (c) and the original impulse response
(d) of Koch (1984).
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