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THE WIGNER DISTRIBUTION AND ITS APPLICATION TO
NON-LINEAR ACOUSTIC WAVE PROPAGATION

E.T. Costat? and S. Leeman?

ABSTRACT -- The Wigner Distribution (WD) is a signal transformation
allowing the simultaneous study, in both the time and frequency domains,
of some characteristics of the process of which this signal is
representative. It is particularly useful for the study of non—-stationary
signals. Non-linear acoustic wave propagation has become a source of
great concern in medical ultrasound because of the suggested possibility
of damage to tissues insonated with commercial medical ultrasound
equipment. Its main relevant characteristic is the change in the
frequency contents of the acoustic wave as it propagates along a medium
with the generation of steepening wavefronts. This paper shows the
applications of the WD to the study of finite—amplitude effects of
ultrasound propagation in water.

INTRODUCTION

The use of ultrasound equipment in medical diagnosis and therapy has
increased continuously in the past few years. Although many- other imaging
devices and techniques have come to light, the role of ultrasound methods in the
assessment of many diseases and in therapy is bound to grow. Many researchers
have observed finite—amplitude effects in tissues and other biological media (Dunn
et al., 1982; Muir and Carstensen, 1980; Starritt et al, 1985). In their paper,
Starritt et al. demonstrated non-linear propagation effects when using both ordinary
pulse-echo diagnostic and continuous wave therapeutic equipment.

The study of non-linear ultrasound propagation is normally carried out using
a point—like hydrophone, which introduces diffraction effects that must be
unravelled from the non-linear effects (and sometimes from the further complications
arising when focused transducers are used for generating the ultrasound field).
We have previously presented (Costa et al, 1987-a,b) a new technique based on
a purpose—built PVDF hydrophone which enables the study of ultrasound fields
without being compromised by the diffraction and focusing effects inherent in
most measurement schemes. In those papers the non-linearities of the ultrasound
field produced by focused transducers could be better understood and visualized
when using our measurement technique, rather than the conventional approach.
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In this paper, a signal transformation is used in order to study finite—amplitude
effects of ultrasound waves in ordinary tap water. This signal transformation is
the so called Wigner Distribution (WD), and is relatively unknown in medical
ultrasound applications. The WD allows the simultaneous display and analysis of
both the time and frequency representations of a signal. It is particularly useful-
for analysing non-stationary signals, such as non-linear ultrasound pulses. It
is shown how the non-linearities develop with range, and most interestingly, that
they may be confined to a particular region in the time domain. Although this
could be inferred from our previous paper (Costa et al., 1987-<a), the explicit
visualisation of this result is made possible only by the WD.

THE WIGNER DISTRIBUTION

The WD was first introduced by Wigner (1932) in the context of quantum
mechanics, and for signal analysis by Ville (1948). It makes it possible to show,
in a single display, both the temporal evolution and the frequency content of a
signal. The WD of a signal is given by:

w,(z,w)=f_:f(t+r/2)f'(t—r/2)exp(-jwr)dr ¢))

where:
t is the time variable
w is the frequency variable
Fdenotes the complex conjugate of the signal f(t)

The Wigner Distribution has several very interesting properties and the reader
should refer to the papers by Claasen and Mecklenbrauker (1980-a,b,c), Marinovic
and Smith (1984) and Boudreaux-Bartel (1985) for further details, as well as to
the original papers by Wigner and Ville. Some of the properties that are important
for the work presented here are summarised below:

1- The WD of any real or complex signal will be real;

2— The WD of a real signal is an even function of the frequency;

3-- The integral of the WD over the frequency variable at a certain time t yields
the "instantaneous signal power" at that time, i.e.:

-
15 [ W, w)dw )

4— The integral of the WD over the time variable at a certain frequency w yields
the power spectral density at that frequency, i.e.:

lF(w)|2=f:W,(t,w)dt 3)

From the above mentioned properties, and from the definition of the WD, it
can be appreciated why it is said that this representation contains both the
temporal and spectral features of the signal f(!). This representation is now
used in order to analyse non-linear ultrasound pulses.
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IHE EXPERIMENTAL SETUP

The experimental setup is shown in Figure 1. A.pulsed ultrasound field was
produced by a 19 mm diameter, 2.26 MHz (nominal) centre frequency, 9 cm (nominal)
focused commercial PZT transducer (Philips). The transducer was attached to the
wall of a tank filled with ordinary tap water at 19°C. The transducer excitation
was achieved by applying a short square-wave pulse as the modulation waveform
of a 2.3 MHz carrier provided by a signal generator, whose output was amplified
by an ENI wideband power amplifier (60 dB over the frequency range .1 to 10
MHz). The output of the amplifier was then applied to the transducer. Controlling
the input voltage to the power amplifier made it possible to generate ultrasound
pulses both in the linear and in the non-linear ranges. For the linear case, the
input voltage was set to 160 mV (peak-to-peak), while the non-linear ultrasound
field was produced by a voltage of 830 mV (peak—-to-peak). The trigger for the
digital oscilloscope was provided by a time-~delay pulse generator, triggered by
the modulating signal applied to the signal generator. This allowed for the correct
time-~delayed ultrasound pulse be displayed on the oscilloscope screen, to be
digitized and transferred to the computer (Compaq 386-20). The ultrasound pulse
was measured with a purpose-built PVDF planar hydrophone, with a 76 mm diameter
active surface (in order to ensure that the ultrasound field is entirely intercepted
by the membrane), thereby eliminating unwanted diffraction and focusing effects
in the field measurements (Costa et al., 1987-a). The hydrophone was oriented
perpendicularly to the pulse travel direction. The measurements were taken at
several distances from the tranducer face, starting from 2 cm, and spanning to
27 cm.

EXPERIMENTAL OBSERVATIONS

Figure 2 shows the following time domain pulses: (a) linear case; (b) non-linear
case, at the same measurement locations. The linear and the non-linear pulses
show neither diffraction nor focusing effects, although it is quite easy to note
that the latter vary with distance, as would be expected under such conditions.
A better insight into the phenomenon can be gained with the help of the Wigner
distribution. The WD was computed for all signals shown in Figure 2. Figure 3
shows contour plots describing some of the linear waveforms, and in Figure 4 the
corresponding non-linear waveforms. The WD of the linear pulses show no (or
very little) variation, simply confirming their invariance when measured with our
diffraction-insensitive hydrophone in a linear field. In fact, the WD shows that
our supposedly linear pulse is very miidly non-linear: the usual checks for
non-linearity failed to uncover such a small effect, and this underlines the
sensitivity of the technique. In a field developing non-linearities, however, the
advantage of the use of our hydrophone is patent (Costa et al, 1987-b), and the
WD now provides a completely new way of looking at this phenomenon. Near the
transducer, 2 cm from its face, the WD shows a very well behaved pulse, centred
around 1.9 MHz, quasi—gaussian shape. As the measurements are taken further
away from the transducer face, more and more higher frequency components start
developing. Even more interesting is the possibility of noticing when, in the time
domain, the non-linearities develop. As it can be seen, there is a gradual buiid
up of harmonics (in power) around 2ps, and looking at the time domain pulses in
Figure 2, this can be associated with the occurrence, in time, of a sharpening of
the main positive peak, i.e the transition from a state of rarefaction to sudden
compression, giving rise to the familiar shock-like wavefront in a non-linear
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field. This is further corroborated by a similar gradual building up of harmonics
in the second main transition from a large negative peak (rarefaction) to a positive
peak (compression). Another important point to be noted is that the pulse
gradually decreases in amplitude, now due to the attenuation in water, eventually
leading to a reduction of observable non-linear effects.

The analysis carried out in the previous paragraph was made possible only
with the aid of the Wigner distribution. The main point was the concentration
of the development of harmonics to specific "time regions" in the pulses. Both
the starting and-the ending of the pulses appear unspoiled by non-linear effects.
This is probably due to the amount of power necessary to trigger the non-linear
events and, as the ultrasound wave passes through the hydrophone and is detected,
the initial variations in pressure are not sufficient to develop non-linearities in
the field. Only when there is a huge difference in pressure from a region of
rarefaction to one of compression (and this occurs in a short time), are we able
to observe the building up of harmonics. The WD allows us to define exactly
where the non-linear effects are occurring within the pulse. In general, it is
not the whole waveform that is distorted, but only certain sections of it that
exhibit finite amplitude effects.

CONCLUSION

We presented a relatively unknown signal processing tool applied to the study
of finite amplitude effects in ultrasound wave propagation. This tool, the so
called Wigner distribution, allowed us to gain a new insight into the development
of harmonics in a pulsed ultrasound wave, showing that they are confined to
certain "time zones" within the wave. The use of the WD in conjunction with the
diffraction—insensitive hydrophone developed in our laboratory, provides a
particularly useful experimental procedure for analysing these effects. With the
growing concern about the safety of diagnosis and therapy with ultrasound, the
possibility of assessing the output of ultrasound equipment is of foremost
importance. With the use of the correct measurement technique and signal analysis,
much can be learned in this regard, as suggested in this paper.
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Figure 1: Experimental setup.
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