SISTEMA PARA VISUALIZAÇÃO DE IMAGEM EM TOMOGRAFIA POR RESSONÂNCIA MAGNÉTICA (RM)

por

M. S. V. de $PAIVA^1$, J. F. W. $SLAETS^2$ e L. O. B. de $ALMEIDA^3$

RESUMO -- Neste trabalho serão apresentadas as características de um sistema gráfico em desenvolvimento no LIE (Laboratório de Instrumentação Eletrônica e Computação) do IFQSC, que deverá ser usada na reconstrução e interpretação de imagens obtidas por Tomografia por RM. O sistema mínimo já foi desenvolvido no LIE e já se encontra em operação.

INTRODUÇÃO

Está sendo desenvolvido no Departamento de Física e Ciência dos Materiais do Instituto de Física e Química de São Carlos - USP, um tomógrafo computadorizado por Ressonância Magnética. O console gráfico em desenvolvimento no LIE, virá a fazer parte deste equipamento, possibilitando a visualização e manipulação das imagens obtidas por Ressonância Magnética (RM). Pretende-se desta forma, viabilizar a construção de um tomógrafo por RM inteiramente nacional.

CARACTERÍSTICAS DO SISTEMA GRÁFICO

Recursos gráficos

O sistema gráfico em desenvolvimento deverá possibilitar a seleção dos parâmetros de contraste através de janelas em intensidade, recurso este inexistente nos sistemas gráficos convencionais.

A operação destas janelas deverá ser instantânea, a fim de facilitar a visualização da dinâmica total (16 bits) da intensidade da imagem original.

Outros recursos incluem o "zoom", divisão da tela em quadrantes e definição de contornos.

Aluna do programa de doutoramento do Instituto de Física e Química de São Carlos, USP, Cx.P. 369 - 13.560 - São Carlos, SP.

Professor Associado, Instituto de Física e Química de São Carlos, USP, Cx.P. 369 - 13.560 - São Carlos, SP.

³Técnico Especializado, Instituto de Física e Química de São Carlos, USP, Cx.P. 369 - São Carlos, SP.

Na técnica de Ressonância Magnética, as imagens são obtidas através de pesos proporcionais, definidos pelos tempos de relaxação T1 e T2, na densidade de prótons, conforme explicado no livro de Partain (1984). A divisão da tela em quadrantes permite a comparação destas imagens.

A definição de contornos possibilita a determinação de regiões de interesse, para o cálculo de área, intensidade média, desvio padrão, etc.

Descrição do "hardware"

- O "hardware" do sistema deverá ocupar uma única placa de circuito impresso (dimensões da placa de um microcomputador PC), que deverá ser inserida num dos "slots" do PC/XT.
- O sistema gráfico completo deverá ser constituído por memórias de imagem, um processador gráfico, memória de tela e monitor de vídeo.

Nas memórias de imagem deverão ser armazenadas as imagens digitalizadas, obtidas por RM, com "pixel" de 16 bits. O resultado de operações realizadas entre imagens, contidas nestas memórias, será transferida para a memória de tela, de maneira a manter os dados originais das memórias de imagem, inalterados.

O processador gráfico, já definido, é o TMS34010, otimizado para sistemas gráficos, cuja descrição podemos encontrar no Manual da "Texas Instruments - TMS 34010 User's Guide" (1986). Este processador apresenta facilidades para manipular "pixels" de 1,2,4,8 e 16 "bits", e dados de tamanho arbitrário entre 1 e 32 "bits". Permite o endereçamento de até 128 Mbytes de memória externa, e a escolha de diferentes resoluções para a tela. Pode ser interfaceado diretamente com memórias RAM's dinâmicas comuns ou RAM's dinâmicas específicas para aplicações em vídeo, e gera os sinais de sincronismo para vídeo.

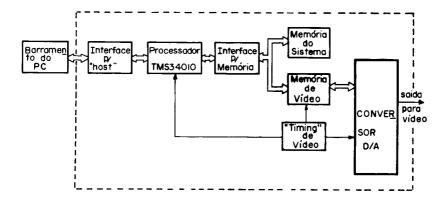
Além disso pode operar como processador mestre, ou pode ser gerenciado por um processador central.

ESTÁGIO ATUAL DO PROJETO

Foi desenvolvido no LIE um sistema mínimo, em operação, com as seguintes características:

Frequência de Operação do TMS34010: 20MHz

Memória do Sistema: 128 "Kbytes" Memória de Vídeo: 128 "Kbytes" Frequência de "pixel": 10MHz


Monitor: branco e preto, com resolução de 512 x 256, 8 "bits" por "pixel", conversor D/A de 8 "bits".

O diagrama em blocos deste sistema é mostrado na figura 1.

Atualmente está sendo implementada a expansão de memória do sistema mínimo, e o "hardware" que permite a inclusão de um "mouse".

Paralelamente, está sendo desenvolvido o "software", em linguagem "Assembly" e C. As rotinas básicas para operação do "hardware" do sistema mínimo já estão conluídas.

- O programa em linguagem C está sendo realizado numa estação gráfica Interpro 32C, de fabricação da Intergraph, por Slaets e Traina (1989), e as seguintes rotinas já se encontram conluídas:
 - a. Transformada de Fourier.
 - b. Manipulação dinâmica dos níveis de cinza da imagem.
 - c. Manipulação interativa do histograma associado à imagem.
 - d. Filtros espaciais.
 - e. Operações lógicas e aritméticas entre imagens.
 - f. Processamento de janelas de visualização.

"Figura 1. Diagrama em Blocos do Sistema Mínimo."

REFERÊNCIAS

- PARTAIN, C., LEON (1984), "Nuclear Magnetic Resonance and Correlative Imaging Modalities", The Society of Nuclear Medicine, Inc., New York, U.S.A.
- SLAETS, J.F., TRAINA, A.J.M. (1989), "Um Sistema de Processamento de Imagens para Tomografia Computadorizada por RNM", Anais do II Simpósio Brasileiro de Computação Gráfica e Processamento de Imagens, páginas 281-287, Águas de Lindóia, SP.
- Texas Instruments (1986), "TMS34010 Assembly Language Tools User's Guide".
- Texas Instruments (1986), "TMS34010 User's Guide".
- Texas Instruments (1986), "TMS34010, 512X512 Pixel Minimum Chip Graphics System Product Application".

A NMR TOMOGRAPHIC SYSTEM FOR IMAGE VISUALIZATION

ABSTRACT -- This paper presents some characteristics of a graphics system that is being constructed in the Electronics Instrumentation and Computation Laboratory (LIE) of IFQSC. This system will be used in reconstruction and interpretation of MR tomographic images. A minimum system is at the moment being used at our laboratory to visualize MR images.