DESENVOLVIMENTO DE CONTADOR PROPORCIONAL PARA SEPARAÇÃO DE CAMPOS MISTOS NÊUTRONS - GAMA

por

Arno H. de Oliveira¹, Abel A. da Silva¹, Eugênio D. V. Filho²

ABSTRACT -- with microdosimetric distributions measured by proportional counter it is possible to measure dose rate, quality factor in mixed neutron - gamma fields. Furthermore we present, the first resultats obtained with a our detector.

INTRODUÇÃO

A determinação da dose num campo de irradiação misto nêutron-gama, a nível microscópico, em material equivalente - tecido, é bastante importante e usual. A contribuição da dose devida à irradiação gama pode chegar a 20% daquela devida aos nêutrons e a medida delas de maneira conveniente e precisa é fato relevante para o estudo dos efeitos biológicos das radiações.

Neste trabalho apresenta-se o projeto e construção de um contador proporcional, capaz de determinar simultaneamente, num campo misto, a taxa de dose equivalente total, a taxa de dose devida aos nêutrons e aquela devida aos gamas e o fator de qualidade, principalmente na região de nêutrons epitérmicos.

De acordo com Fano (1954), temos:

¹-Departamento de Engenharia Nuclear Avenida do Contorno, 842/919 - 30110 - Belo Horizonte/MG -Brasil

²-Departamento de Fisiologia e Biofísica do Instituto de Ciências Biológicas da UFMG

$$\rho_{\rm e} \cdot \mathbf{d}_{\rm e} = \rho_{\rm g} \cdot \mathbf{d}_{\rm g} \tag{1}$$

sendo: ρ_e = densidade da região microscópica
d = diâmetro da região microscópica
ρ_g = densidade do gás que simula a região microscópica
d = diâmetro de cavidade que contém o gás

A célula de um tecido, de densidade ρ_e e de diâmetro d_e pode ser simulada através de uma cavidade esférica de diâmetro d_g, preenchida por gás de densidade ρ_e . Sendo o gás e a parede da cavidade constituídos de materiais equivalente-tecido é possível medir-se a dose na cavidade simulada Oldenburg, Booz (1972).

CARACTERÍSTICAS DO CONTADOR PROPORCIONAL

O detetor é constituido por uma cavidade esférica de plástico A-150 shonka equivalente-tecido. Esta cavidade é envolvida por um "capôt" de alumínio, o que permite aplicar potencial elétrico e adequar a pressão interna de modo a se obter densidade ρ_g do gás conveniente Rossi (1968). A cavidade é atravessada diametralmente por um fio anodo, mantido a potencial V . A "grille", em forma espiral, é mantida a um potencial V , fração de V , cuja função é tornar o campo elétrico próximo ao anodo uniforme. A parede plástico-alumínio é aterrada, servindo como catodo. Este conjunto é apoiado em suporte de plexiglass envolvido em alumínio. O detetor é equipado com uma fonte interna de Am²⁴¹ (emissor α), a qual é usada na calibração do mesmo.

A fig. 1 e quadro 1 apresentam um esquema com as características físicas e dimensões do detetor.

Quando o detetor é exposto a um campo de nêutrons e/ou gama, estas radiações interagem com a parede da cavidade, produzindo radiações secundárias as quais interagem com o gás no interior do detetor, produzindo um sinal que será tratado eletronicamente.

O detetor é acoplado a uma cadeia eletrônica composta por um pré-amplificador de carga de alto ganho (1,5V/pC), um amplificador linear, um analisador multi-canal e um microcomputador. Esta cadeia eletrônica fornece informações numéricas representativas de cada pulso de saída do detetor que tratadas adequadamente permitem calcular diversas grandezas dosimétricas (fig. 2).

Contador Proporcional

51	-	Suporte do eletrodo superior - plexiglass
2	-	Passagem do gãs - plexiglass
3	-	Anel de fixação da "grille" - plexiglass
4	-	Minitubo do canal do anodo - aço inox
05	-	Carcaça esférica - plástico E.T
D 6	-	Conjunto grille - anodo - aço - platina
07	-	Suporte do elètrodò inferior - plexiglass
08	-	Anel de fixação da "grille" - plexiglams
9	-	Passagem de gås - plexiglass
10	-	Minitubo cánál da "grille" - aço inox
11	-	Canal do anodo - aço inox
12	-	Suporte do contador - plexiglass
13	-	Prendedor da grille - aço inox
14	-	Prendedor do anodo - aço inox
15	-	Blindagem do suporte do contador - alumínio
16	-	Correção do gãs - latão
17	-	Conjunto de contacto "capot"-anel - Al+Cu
18	-	Rolha da porta fonte - alumínio

FIGURA 1 CARACTERÍSTICAS DO CONTADOR PROPORCIONAL

Figura 2 - Eletrônica Associada

DETERMINAÇÃO DAS GRANDEZAS DOSIMÉTRICAS

A energia depositada pela radiação no contador é proporcional a amplitude do sinal gerado. Sendo o multicanal um aparelho que fornece num dado canal, um sinal proporcional à amplitude de entrada, é possível transformar a escala de canais numa escala de energia linear da radiação geradora do sinal. Para a calibração do sistema usa-se a fonte interna de Am²⁴¹. As partículas α emitidas pelo Am²⁴¹ (E α_1 = 5,48 MeV e E α_2 = 5,44 MeV), ao atravessarem o volume sensível perdem certa quantidade de energia ao interagirem com o gás da cavidade. Esta perda fornece um espectro como o mostrado na fig. 3, onde o cume do mesmo representa a perda mais provável de energia. A seguir ela é associada a um canal correspondente n_i(α). O número do canal, n_i, é convertido em energia linear usando-se um coeficiente K_e, obtido a partir da calibração do detetor, ou seja:

$$K_{e} = \frac{y_{i}}{n_{i}}$$
(2)

sendo y_i = Energia depositada pela partícula alfa por unidade de comprimento.

Para o detetor desenvolvido os valores dos parâmetros acima são apresentados no quadro 2.

A obtenção do espectro de dose a partir do espectro de impulsão é feita utilizandose um coeficiente K_d Leroux (1982), que permite passar da energia linear y_i para a dose absorvida D_i . Este coeficiente depende da massa do gás, do volume sensível e do comprimento da corda média (\tilde{L}) da cavidade. Ele é calculado a partir de uma aproximação que consiste em comparar a função de Dirac centrado sobre a corda média Leroux e Herbauty (1982), Nguyen et al (1982). Sendo:

$$K_{d} = \frac{\bar{L}}{\bar{m}}$$
(3)

onde m é a massa do gás da cavidade correspondente.

A dose do i-ésimo canal é dada por:

$$\mathbf{D}_{i} = \mathbf{K}_{d} \cdot \mathbf{C}_{i} \cdot \mathbf{y}_{i} \tag{4}$$

e a dose total será:

$$\mathbf{D}_{\mathbf{T}} = \sum_{\mathbf{i}} \mathbf{D}_{\mathbf{i}} = \sum_{\mathbf{i}} \mathbf{K}_{\mathbf{d}} \cdot \mathbf{C}_{\mathbf{i}} \cdot \mathbf{y}_{\mathbf{i}} = \mathbf{K}_{\mathbf{e}} \cdot \mathbf{K}_{\mathbf{d}} \cdot \sum_{\mathbf{i}} \mathbf{C}_{\mathbf{i}} \cdot \mathbf{n}_{\mathbf{i}}$$

DETERMINAÇÃO DO FATOR DE MULTIPLICAÇÃO

A equação abaixo permite a determinação do fator de multiplicação do contador:

$$\ln A = \frac{V \ln 2}{B \ln (b/a)} \cdot \ln \frac{\Delta V}{B \rho a \ln (b/a)}$$

A - fator de multiplicação

ρ - densidade do gás

V - voltagem de operação

a - raio do anodo

b - raio do catodo

B e ΔV - constantes do gás determinadas a partir de Williams e Sara (1912) cujos valores são apresentados no quadro 2. A fig. 4 mostra a variação do fator de multiplicação com

	Contador proporcional	L	
	material	aluminio	
	forma	cilíndrica	
Invólucro	diametro externo	69,0 mm	· · · · · · · · · · · · · · · · · · ·
	altura	114,0 mm	
	espessura da parede	1,7 mm	
	forma	esférica	
Volume	diâmetro	51,6 mm	
VOLUMO	volume	72,0 mm	
Sensivel	parede	material	E. T. A150
		espessura	5,0 mm
Fig and	material	cobre	
FIG anodo	diâmetro	71 μm	
	material	platina	
FIG GITTE	diâmetro	3,0 mm	
Fonte interna	radioisótopo	Am ^{2 4 1}	
de calibração	Energia	5,44 MeV;	5,48 MeV
	composição do gás em volume (%)	CH -	89,32
Características		ୁ ମ _{ହା} ଣ୍ଡ –	7,79
d		ເ _ຂ н –	0,74
do gas de		co ₂ -	0,48
preenchimento		$N_2 + O_2 -$	1,67
	Densidade	3,88E-5 g	~cm®
	Pressão	38,9 Torr	
Resolução do contad	or	25%	

QUADRO I Características físicas do contador

Coeficiente K0,610 Kev/ μ mCCorda média (1)1,33 μ mTLE86,56 Kev/ μ mdiâmetro simulado (d)2 μ mCoeficiente K3,48E-9 C. Gy μ m/KevEnergia para criar28,7 eVum par de ions (w)1,059E-3 Mev . cm /gStopping power (S)1,059E-3 Mev . cm /gConstante B32,97 eVConstante AV3,62E-7 g/cmFator de multiplicação (A)5,35E3

QUADRO II Grandezas dosimétricas

Figura 3. Espectro representando a perde de Energia.

Figura 4. Mostra a variação do fator de multiplicação com a voltagem.

Figura 5. Curva mostrando a resolução do contador em função do ganho.

a voltagem.

A partir da determinação do fator de multiplicação foi possível determinar a resolução do contador (fig. 5).

CONCLUSÃO

Os testes iniciais com o detetor foram feitos usando no seu interior gás natural, pois a concentração de metano é bastante elevada (80,99%). Os primeiros resultados mostraram que o gás equivalente - tecido poderá ser substituído pelo gás natural.

Outro resultado bastante significativo é a resolução do contador (25%) a FWHM.

A variação no fator K_e entre o início de uma série de medidas e o seu final são inferiores a 1%, resultado este que concorda com Leroux (1982). Estes resultados mostraram que a troca do gás deverá ser feita a cada três dias.

REFERÊNCIAS

- FANO, U., (1954) Note on the Bragg-Gray Principle for Measuring Energy Dissipatio. Radiation Research, 1, 137-40.
- LEROUX. J. B. & HERBAUTY., (1982) Etudes Microdosimetriques derayonnements photoniques et neutroniques. Note D'etude SPR/GSTEC, LD nº 82.03
- NGUYEN V. D., LUCCIONI C., CHUITON R., CHAPUIS J. C., RICOURT A., PARMENTIER N., Compteur Intégrateur de Rayonnement Complexe (C.I.R.C.E.). Communication présentée au "Congrès Connus Italo-Français de Radioprotection", Florence (italie) 30 mai - 1^{er} juin 1983.

OLDENBURG U. & BOOZ, J., (1972) Mass stopping power and path length of neutron produced recoils in tissue and tissue equivalent materials.

ROSSI, H. H., (1968) Microscopic energy distributions in irradiated matter. In: Radiation Dosimetry, Vol. I, 43-92.

WILLIAMS, A., SARA R. I., (1962) Parameters Affecting the Resolution of a Proportional Counter. In: International Journal of Applied Radiation on Isotopes. Vol. 13, 229-38.,