DESENVOLVIMENTO DE UM SISTEMA DE CONTROLE DE FONTES RADIOATIVAS ALFA E BETA

por

S.K. DIAS & L.V.E. CALDAS

RESUMO — Foi projetado e construído um sistema de detecção de radiação alfa e beta, utilizando-se um plástico cintilador, com o objetivo de possibilitar um controle das fontes para calibração de detectores de contaminação. Três arranjos distintos de medida foram testados, utilizando-se eletrômetros e um contador temporizador. Os resultados preliminares obtidos de estabilidade a curto e médio prazos, linearidade e dependência energética mostram que o sistema constituído pelo contador é o mais viável.

INTRODUÇÃO

As monitorações sistemáticas de rotina devem ser realizadas com instrumentos de detecção sensíveis em qualquer instalação onde são manuseados materiais radioativos e portanto onde existe a possibilidade de contaminação.

Os instrumentos utilizados normalmente para detecção de contaminação alfa e beta são os cintiladores, os contadores proporcionais e os detectores semi-condutores (IEC, 1981 e OBERHOFER, 1983). Os detectores do tipo Geiger-Müller com janelas finas podem também ser utilizados, embora sua eficiência seja bem menor e a presença da radiação beta e gama possa interferir nas medidas, por exemplo, de radiação alfa.

As fontes radioativas utilizadas na calibração destes detectores devem ser padronizadas (IAEA, 1971 e ISO, 1988). Devem ser utilizados, preferencialmente, vários radionuclídeos emissores alfa pois a sensibilidade dos instrumentos podevariar com a energia da radiação incidente. Esta variação depende da espessura da janela de entrada e da profundidade do detector. O alcance limitado das partículas alfa no ar leva à necessidade de que os instrumentos sejam calibrados e utilizados tão próximos quanto possível das fontes radioativas. Este fato, por sua vez, faz com que a resposta dos instrumentos apresente uma grande

⁻Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP Travessa "R" no. 400 Cidade Universitária CEP 05499 São Paulo - SP - Brasil

dependência com as dimensões tanto das fontes como dos detectores(IAEA, 1971).

O processo de calibração de um monitor utilizado para medir contaminações de superfície envolve, segundo MERCER (1984), os seguintes estágios (ou alguns deles): fontes padrões nacionais, um instrumento de transferência nacional, fontes padrões secundárias, um instrumento de transferência secundário e fontes padrões de trabalho. Os instrumentos de transferência são geralmente contadores proporcionais, com fluxo contínuo de gás.

O objetivo deste trabalho é o desenvolvimento de um instrumento de transferência secundário, simples, para o controle das fontes utilizadas para a calibração de monitores que detectam contaminações de superfície. Um sistema foi projetado e construído e suas características principais, como estabilidade a curto e médio prazos, linearidade e dependência energética, foram estudadas.

PROJETO E MONTAGEM DO SISTEMA DE MEDIDA

O sistema de detecção é constituído de um plástico cintilador (HAMADA & MESQUITA, 1988), um guia de luz de Lucite, uma válvula fotomultiplicadora EMI, modelo 9531B, Inglaterra, e um divisor de tensão. A tensão de operação de 1300 V foi fornecida por uma fonte de alta tensão Tectrol, modelo TCH 3000.

Na Fig. 1 está apresentado o esquema do sistema de detecção. As fontes são posicionadas de forma fixa em placas de PVC, que se adaptam à gaveta do arranjo experimental.

Três conjuntos distintos de medida foram testados:

- 1) Um eletrômetro Keithley, modelo 616, EUA, com bloqueio de display em intervalos de 10 s, permitiu a tomada de medidas tanto de carga como de corrente elétrica. Os valores foram registrados por uma impressora Dismac, modelo 122 MPV, Brasil, ligada ao eletrômetro por meio de uma interface.
- 2) A um eletrômetro Keithley, 610C, EUA, foi necessário acoplar-se um multímetro Triel, modelo MTR 4410, Brasil, para se obter os resultados de carga e corrente de forma digital.
- 3) Um contador temporizador duplo IPEN, modelo PM 515, com um amplificador IPEN, modelo PM 321, um analizador monocanal IPEN, modelo PM 431, e uma fonte de alimentação IPEN, modelo PI 122, Brasil, possibilitaram a tomada de dados em número de contagens por minuto. Neste caso, o divisor de tensão teve que ser trocado para permitir medidas de pulsos.

RESULTADOS

a. Estabilidade a Curto e Médio Prazos

O teste de estabilidade a curto prazo (repetibilidade) consistiu na tomada de 10 medidas consecutivas utilizando-se uma fonte de 241Am (2.305 s-1) posicionada de forma reprodutível dentro de cada um dos sistemas de medida. Repetindo-se esta experiência ao longo do tempo (10 séries diárias), sob as mesmas condições geométricas, tem-se o teste de estabilidade a médio prazo. Na Tabela I pode-se observar os valores dos desvios percentuais obtidos.

h. Linearidade

O teste de linearidade foi realizado utilizando-se uma fonte de 241Am (2.305 s-1) e variando-se o tempo de medida até um total de 300 s. Observou-se um comportamento linear em todos os três sistemas de medida.

O mesmo estudo foi feito com fontes de 241Am, com diferentes valores de fluxo de emissão (entre 55,3 e 11.100 s-1). Na Fig. 2 tem-se a resposta do sistema 3 (contador temporizador) em função do fluxo de emissão. Verifica-se um comportamento linear. O mesmo foi obtido no caso dos sistemas 1 e 2.

c. Dependência Energética

A resposta de cada um dos sistemas detectores foi medida para fontes de radionuclídeos diferentes, com o objetivo de calibrar o sistema e de estudar a sua dependência energética, tanto para radiação alfa como para beta.

Para isto foram utilizadas fontes padrões calibradas no Laboratoire de Métrologie des Rayonnements Ionizants, Gif-Sur-Yvette, França.

Os resultados obtidos podem ser vistos nas Tabelas II e III para radiação alfa e beta respectivamente. No caso das fontes alfa, os fatores foram normalizados para 241Am e no caso das fontes beta, para 90Sr + 90Y.

Os sistemas 1 e 2 apresentam respostas similares, crescentes com a energia, tanto para radiação alfa como para beta. A menor dependência com a energia foi mostrada pelo sistema 3.

CONCLUSÃO

Um sistema de detecção de radiação alfa e beta foi projetado e construído, utilizando-se um detector plástico cintilador, para o controle das fontes utilizadas na calibração de monitores de contaminação de superfície. Suas características principais foram determinadas, por meio de três sistemas distintos de medida, tendo-se obtido uma resposta linear em função do fluxo de emissão de fontes de 241Am, em todos os casos. Em relação aos resultados obtidos para os testes de estabilidade a curto e médio prazos, assim como para o estudo da dependência energética para radiação alfa e beta, o sistema de contagem mostrou-se o mais adequado.

AGRADECIMENTOS

As autoras expressam seus agradecimentos pelas colaborações ao Sr. Marcos Xavier, aos grupos de Produção de Plásticos Cintiladores e de Metrologia Nuclear do Departamento de Proteção Radiológica do IPEN e ao Departamento de Metrologia do Instituto de Radioproteção e Dosimetria, CNEN, Rio de Janeiro.

REFERÊNCIAS

- Hamada, M.M. e Mesquita, C.H.(1988). "Preparação de Detectores Plásticos Cintiladores e Caracterização de Parâmetros Físico-Químicos", Publ. IPEN 216.
- IAEA (1971), International Atomic Energy Agency. "Handbook on Calibration of Radiation Protection Monitoring Instruments". Vienna, (Technical Report Series, 133).
- IEC (1981), International Electrotechnical Commission. "Alpha, Beta and Alpha-Beta Contamination Meters and Monitors". Genève, (Publication 325).
- ISO (1988), International Standard Organization. "Reference Sources for the Calibration of Surface Contamination Monitors". ISO Standard 8769 (E).
- Mercer, R.A. (1984). Nucl. Instr. Meth. Phys. Res., 223, 435-437.
- Oberhofer, M. (1983). "Radiation Protection Instrumentation for Area Monitoring". CEC EUR 8616, Ispra, Italy.

TABELA I

Estabilidade a Curto e Médio Prazos dos Sistemas de Controle de Fontes Alfa e Beta

Sistema	Estab. a Curto Prazo Desvio Padrão(%)		Estab. a Médio Prazo Desvio Padrão da	
	1	3,06	4,84	1,52
2	0,29	1,35	0,68	
3	0,18	0,42	0,47	

TABELA II

Dependência Energética dos Sistemas de Controle para Fontes Alfa
Fc: Fator de Correção para Dependência Energética Normalizado para 241 Am

Fluxo de Emissão	Energia		Fc		
(s ⁻¹)	(MeV)	Sist.1	Sist.2	Sist.3	
171,8	4,783	0,779	0,712	0,905	
	4,824				
165,3	5.105				
,		0,847	0,788	0,914	
	5,156	,	,	•	
183.5	5.456	0.970	0.914	0.930	
, -	5,499	- , -	-,	- ,	
167.2	5.442	1	1	1	
	5,486		_		
142.1	5.666				
- · -,-		1,034	1,007	0,953	
	5,805	,	-,	-,	
	Emissão	Emissão (s ⁻¹) (MeV) 171,8 4,783 4,824 165,3 5,105 5,143 5,156 183,5 5,456 5,499 167,2 5,442 5,486 142,1 5,666 5,763	Emissão (s¹) (MeV) Sist.1 171,8 4,783 0,779 4,824 165,3 5,105 5,143 0,847 5,156 183,5 5,456 0,970 5,499 167,2 5,442 1 5,486 142,1 5,666 5,763 1,034	Emissão (s ⁻¹) (MeV) Sist.1 Sist.2 171,8 4,783 0,779 0,712 4,824 165,3 5,105 5,143 0,847 0,788 5,156 183,5 5,456 0,970 0,914 5,499 167,2 5,442 1 1 5,486 142,1 5,666 5,763 1,034 1,007	Emissão (s-1) (MeV) Sist.1 Sist.2 Sist.3 171,8 4,783 0,779 0,712 0,905 4,824 165,3 5,105 5,143 0,847 0,788 0,914 5,156 183,5 5,456 0,970 0,914 0,930 5,499 167,2 5,442 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABELA III

Dependência Energética dos Sistemas de Controle para Fontes Beta

Fc: Fator de Correção para Dependência Energética Normalizado para ⁹⁰Sr + ⁹⁰Y

Fonte	Atividade	Energia Máxima (KeV)	Fc			
	(kBq)		Sist.1	Sist.2	Sist.3	
¹⁴ C	64,1	156,6	0,0141	0,0137	0,0863	
¹³⁷ Cs	23,9	511,5	0,0281	0,0282	0,586	
³⁶ Cl	15,3	709,5	0,0354	0,0363	0,756	
⁹⁰ Sr+ ⁹⁰ Y	10,8	546,0 2.274	1	1	1	

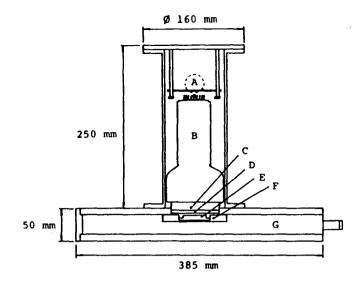


Figura 1. Esquema do sistema de controle de fontes alfa e beta

A: Divisor de tensão

B: Válvula fotomultiplicadora

C: Guia de luz (Lucite 3 pol, espessura 12 mm)

D: Detector plástico cintilador (3 pol, espessura

3 mm

E: Fonte radiotiva

F: Suporte de fonte (PVC)

G: Gaveta

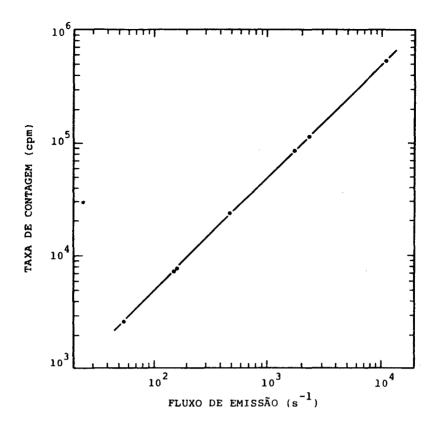


Figura 2. Linearidade da resposta do sistema de contagem para $^{241}{\rm Am}$.

DEVELOPMENT OF A CONTROL SYSTEM FOR ALPHA AND BETA RADIOACTIVE SOURCES

ABSTRACT — A system of alpha and beta radiation detection was designed and constructed, using a plastic scintillator, in order to control the sources used for the calibration of contamination detectors. Three different measurement systems, with electrometers and a temporizer counter, were tested. The preliminary results of the short and medium-term stabilities, linearity and energy dependence show that the counter system is the most practicable.