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AN INTRODUCTION TO THE DISCRETE ORTHOGONAL WAVELET TRANSFORM
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ABSTRACT - Wavelet transforms have recently gained considerable
attention as a possible alternative (with distinct advantages) to
more traditional data transformations (eg. Fourier, Cosine),
especially when applied to transient data. In the present work
the basic concepts of wavelet transforms will be described and
attention is then focused on one of the families of wavelets, the
discrete, orthogonal of finite support. The theoretical
background will be developed for the direct and inverse
transformations as well as the selection of the wavelets. The
aim is to explain these in engineering terms, avoiding the more
complicated (and for practical use often unnecessary)
mathematical techniques generally employed in the description of
the methods.
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INTRODUCTION

In the processing and analysis of signals, data
transformations have become some of the best established tools.
Two main reasons for their use may be given: firstly, certain
signal processing operations are more readily and more
efficiently performed in the transform domain (eg. correlation ar
linear filtering through the Fourier Transform), and secondly the
'important' information may be compressed into fewer terms. The
latter may be used in data compression for signal transmission
and storage, or may form the first stage in data classification
or pattern analysis (eg. the use of the power-spectrum to
simplify the analysis of electroencephalographic (EEG) signals).

Through the transformations, the signals are expressed as a
linear combination of the 'basis functions'. For the Fourier
Series, these are sine and cosine terms of harmonically related
frequencies ar for the Karhunen-Loeve transform (Principal
Components Analysis) the eigenvectors of the autocovariance
matrix. This may be viewed as a form ofmodeling of the signals
and may be useful, even if the model is not 'correct' in terms of
the physical process generating the signal. In this way, the
Discrete Fourier ~ransform (DFT) may be useful in the analysis of
transients, which are evidently not caused by infinite
oscillations which happen to combine in such a way as to give the
observed function at that instant in time. However, a model that
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is more realistic may be expected to be more effective in signal
analysis. Thus, for transients, a model based on fu~ctions
concentrated in time (or even finite) is probably more sU1table.
The wavelets are examples of such functions. Their use in the
processing and analysis of a wide range of signals has begun to
be explored - including for biomedical signals (eg. Sendhadji et
aI., 1990; Nagae et aI., 1991).

Through the wavelet transform, the signal is modeled as a
weighted sum of the 'wavelets', which ar~ translated and scaled
(or dilated) in time (Strang, 1989). There exists an infinity of
possible wavelet bases, which may be grouped into families (Rioul
and Vertterli, 1991). The ones considered here are discrete
(i.e. the wavelets are fully defined by a sequence of values and
implementation of the transform for discrete signals is thus not
only, as with other wavelets, an approximation which is necessary
for computation), orthogonal (the wavelets, translated and
dilated, are orthogonal to each other) and are of finite
duration (finite support, h(i)=O, i<O, i~M), as developed by
Daubechies (1988). This set of functions still includes a wide
variety of wavelet shapes, ranging from the relatively smooth to
the very irregular (depending on a choice of parameter in its
definition see for example figo 5, 6 and 7) and may be
classified according to the number of samples involved in the
discrete wavelet (wavelets of two, four and six samples will be
considered).

In this paper, the conditions the wavelets have to satisfy
will be developed, as well as the algorithms for the forward and
inverse transforms. It is aimed at using simple mathematics
throughout, sufficient to understand and use the transforms but
avoiding the more elaborate mathematical terminology and
techniques commonly used in its derivation. Only real-valued,
one dimensional, deterministic signals of finite energy will be
considered.

THEORETICAL BACKGROUND

The wavelet transform of the function f(x), in its general
form, is given as

(Uf) (a,b) = <f'~a.b>

00

lal -U2 J x-b
f(X)~(a)dX

-00

(1)

x-b
where <.,.> represents the inner product and ~a b(X) ~(--). a
with the parameters a and b representing dilation and translation
respectively. Since ~(x) is selected to have a band-pass
spectrum, the transformed' data is effectively a band-pass
filtered version of the signal (with b as the 'new time-axis),
whose bandwidth is varied with a. By sampling the continuous two­
dimensional function defined in (1), a discrete form is derived:

(Tf) (m,n) = cmn = <f'~mn>' (2)
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with

IJtmn(x) = ao-m/2 lJt(a~mx - nbo) =

= ao-m/2 lJt(a~m(x - n ao
m bo) (3)
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where x is still a continuous variable, ao and bo are constants
and m and n integers, giving dilation and translation

(corresponding to a and b in (1». The factor ao-m/2 guarantees
that the energy of IJtmn (x) remains independent of dilation leveI
m.

The signal is thus transformed into a series of band-pass
filtered versions whose bandwidth decreases with increasing
dilation of lJt (increasing m) and hence may be sampled at a
progressively lower rate. The dependence of sampling rate on
dilation is evident from (3) and consistent with sampling theory.

The question immediately arises, if there exists an inverse
transform, i.e. whether it is possible to reconstruct the
continuous f (x) from the transform samples (Tf) (mn) . For a
restricted set of IJtmn (the conditions defining a 'frame') this
may be carried out through an iterative process and under even
tighter conditions (orthogonal IJtmn), directly. Furthermore, in
the ínterest of minimizing the number of terms necessary to
define the signal, the transform coefficients should also be
independent: it has been found that with the use of frames, high
redundancy of information may arise (Daubechies, 1988) •
Orthogonality of lJt(x) guarantees linear independence between
transform components (i. e none can be calculated as a linear
combination of the others). The similarity with the Fourier
transform may be noted, where the sine and cosine bases are also
alI mutually orthogonal.

ORTHOGONAL WAVELETS

Following the discussion above, only orthogonal wavelets
will be considered from now on and furthermore, let ao = 2 and
bo = 1. To begin with, the functions and wavelets are continuous
time, the step to the discrete time signals will follow later.

Now let the function f (x) be a weighted sum of translated
versions of some low-pass function ~(x) at dilation leveI m (the
role of the band-pass function ~(x) will become evident further
along). In accordance with (3), this dilated version of ~(x)

will be denoted as ~mn' Thus,

(4)

where ~(x) is now known as the scaling function. It is easy to
confirm that indeed c mn = <f,~mn>' as given in (2): with (4),

< (:Ek c mk ~mk)' ~mn> = ~k c mk</fImk' /fImn> = c mn (5)
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if ,= and ,~ are orthonormal, i.e.
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(6)

where
li (n) 1, n=O,

O, n"O.

It then also follows that

<f,f> = ~n c~n· (7)

Note the similarity to the Fourier Series in the forward and
inverse transformation and in energy preservation (equivalent to
Parseval's theorem).

Now let Vo denote the space of functions, whose basis is
,(x) at dilation m=O (f(x) = ~n C On 'on(x». Furthermore, if
f(x) E Vo, let the slower, lower frequency (more dilated) signal
f(x/2) E Vil where Vt forms a subspace of VO. continuing this
process, a set of such subspaces can be constructed with signals
of lower and lower bandwidth, corresponding to the successively
more dilated signals. This may be illustrated as a system of
concentric circles (fig. 1): the subspace with higher values of m
lie closer to the centre and represent a more restricted set of
signals. A signal in Vt will also be in VO, but not necessarily
vice versa.

Fig. 1. Function spaces for orthogonal Wavelets. The spaces Vi
are represented by the areas of the circles, and Wi by the rings
betroreen them.

As an example of such a system of spaces, Vo may define the
set of functions which are piecewise-constant (in time) with
step-widths of unity. Vt would then correspond to the functions
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with step-width of 2 units, V2 with 4 units, etc. This is
illustrated in figo 2 by a sine-wave of varying frequency,
approximated (in spaceli? Vt , V2 , v3 and V4 ) by linear segments
whose width doubles with every step of m. The function at m=2 is
contained in Vt but not vice versa. For this set of spaces,
~(x) = 1, O ~ x < 1, and O otherwise. This leads to the simplest
of orthogonal wavelets with finite support and is equivalent to
the well known Haar transform (Mallat, 1989).

Signol

m=O

m=l

m=2

m=3

m=4

Fig. 2. The original signal and wavelet reconstructions (levels
m=O to 4) using the Haar basis.
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A signal which is an element of Vo but not Vm, can therefore
only be approximated by (4). It is interesting to note - and
very convenient - that this approximation is optimal in the mean­
square sense, as can easily be demonstrated: let the mean-square­
error be

Ol

e = J[(f (x) - I:n cmn I/>mn(x)]2 dx,
-Ol

and minimizing with respect to a cmk ,
Ol

since the I/>mn are orthonormal. Thus, for the minimum mean-square
error reconstruction, the c~ are those given by (2).

A high value of m thus leads to a coarse approximation to
the function and with a decrease in m, successively better
approximations to the signal are achieved, revealing more signal
detail until, at m O, this signal (if it is in Vo) is
reconstructed perfectly. This successive approximation approach
is therefore known as Multiresolution Analysis (Mallat, 1989).

The reconstruction of f (x) at dilation leveI m-l (to be
denoted by fm-d is given as
f m-1 = I:n c(m-lln I/>lm-lln
but may also be given in terms of the lower resolution f m and a
difference term

(8)

It is the function ~(x) which is known as the primary wavelet,
and ~~ is obtained from it in accordance with (3).

By requiring orthonormality between I/>mn and ~~ and also ~mn

and ~~ (in addition to that of the I/>mn already discussed) :

<I/>mn' ~mk>
<~mn,I/J~>

<l/>mn,I/>~>

O

cS (n-k)
cS(n-k)

(9a)
(9b)
(9c)

the calculation of the parameters cmn and dmn becomes simply

<fm-1 ,l/>mn>
<fm- 1 , I/Jmn>

<fm,l/>mn> = <f,l/>mn>'
<f ,I/Jmn>.

(10a)
(10b)

This follows by orthogonality from (4) and (8), and the last
equality for cmn corresponds to the original definition in (2);

dmn may be defined in a similar way, considering that f m-1 is the
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best mean-square approximation of f(x) in Vm-1 "

By extension of (8),

f m_1 = LnCmn I/Jmn + Lk d..k 1/Imk + Lk d(m-llk 1/1 (m-llk +
+ •..• + Lk d(m-I+llk 1/I(m-l+l)k' i = 1,2 .. m.

(11)

The signal f o is therefore given through a low-resolution term
f m (as determined by c mn and I/Jmn ) and m difference terms (given
by the d jk and 1/I jk ) to achieve progressively higher resolution.
In terms of the functional spaces illustrated in figo 1, the
rings between Vj and Vj_1 are the spaces Wp whose basis is 1/1 (x)
at dilation j. starting from the restricted space Vm, the
successive addition of the W1 builds up the space Vo •

Returning to the earlier example, Vm is the set of piecewise

constant functions whose step-width is 2m• As shown above,
I/J (x) = 1, O:s x < 1,

= O, otherwise,
and, as will be clear later,

1/1 (x) = 1, O :s x < 1/2
= -1, 1/2 :s x < 1

O, otherwise.
The similarity with the well known Haar transform is now evident.
The function f m is therefore the approximation of f (x) with a

step-width of 2m and each of the remaining terms in (11) adds
detail by reducing the step-width by one half. At each stage the
best (in the mean-square sense) approximation to the function
f(x) with piecewise constant segments is obtained. If the
wavelet transform is used in data-transmission, first a broad
outline of the signal would be obtained through the cmn which
would be sent first, and then progressively the resolution is
improved as further detail is added with successive leveIs of ~
(see figo 2). This scheme has the great advantage of immediately
giving a rough outline of the signal, and transmission may be
interrupted when the desired resolution has been achieved. In
other schemes, complete transmission of (compressed) data is
required to give intelligible results.

Another possible interpretation of (11) is as a set of
filters, such that for example, cmn defines the signal in the
bandwidth up to 1 Hz, d..n in 1-2 Hz, d (m-l In in 2-4 Hz etc.,
thus progressively increasing the bandwidth of the signal. It
must be pointed out that this comparison is inaccurate in the
sense that the filters involved in the wavelet transform are of
course not ideal low or band-pass, but each term does give
additional high-frequency detail, and (1/1 being time-scaled by a
factor of two) has twice the bandwidth of the preceding one.
Indeed, ideal band-pass filters would not lead to finite-Iength
wavelets, as desired.
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rf the function f (x) E Vm, then f (x)

O, as follows from (8). Therefore

dum = O = <fm-1, I/Jmn> = <fm, I/Jmn> =

= I:k c(m+1)k <1/I(m+llk,l/Jmn> + I:k d(m+1)k <1/J(m+llk,l/Jmn>
(12)

and hence <1/I(m+1)k' I/Jmn>
extension, through (11),

O and <I/J (m+1)k' I/Jmn> O, and by

<1/1 (m+ j)k' I/Jmn>
<\fi (m+ j)k' I/Jmn>

O, j ~ O

O, j .. O

(13a)

(13b)

confiJcming the orthogonality of the spaces W1 , illustrated in
figo 1. It can readily be confirmed that the above holds true
for the case of the Haar wavelet.

considering that 1/1 (x) E Vo C V-1 (as follows
definition) evidently 1/1 (x) can be transformed (as
function) and given, at tra~sform level m = -1 as

1/1 (x) = ';2 I:k ck 1/1 (2x-k) ,

(see (3) and (4», where
c k = ';2 <1/I(x),1/I(2x-k».

from the
any other

(14a)

(14b)

Similarly, I/J (x) may be transformed (since I/J(x) E Wo c V_tl and in
order to satisfy the orthogonality conditions given above, it may
be given in terms of the same coefficients ck :

(15)

since
c 1_j 1/I(2x-2n-j»
all terms are zero except

This guarantees that <1/1 (x) ,I/J(x-n)> = O,
<1/1 (x) ,I/J(x-n)> = <I:k ckl/l(2x-k), I: j (-l)j
and due to the orthogonality of I/I(x),
if k = 2n+j, such that
<1/1 (x) ,I/J(x-n)> 2 I:k ck (_1)-2n+k c 1-(k-2n)

2 I: (k even) [( -1) 2n-k ck C 2n-k+1 +

+ (-1) 2n- (2n-k+1) C2n-k+1 c 2n- (2n-k+1) +1 ]

= 2 I:(k even) (ck C 2n-k+1 - C 2n-k+1 c k) = O.
It may be pointed out that the above sum may be taken to
limits of k=±~, (thus avoiding 'edge-effects'), though there
only a finite number of non-zero c j •

the
are

since l/J(x/2) = ';2 I:k (-l)k C 1-k 1/1 (x-k) and <1/1 (x+k) ,1/J(x»=O,
it follows from the above that also <1/J(x),I/J(x/2» = O and clearly
<I/J (2x-n) , I/J (x) >=0, conforming to the orthogonality conditions in
(13). Now, 1/1 (x) = ';2 I:k ck 1/1 (2x-k) = ';2 I:k c k (';2 I:n c n 1/I(4x-2k-

n» and consequently <1/1 (x) ,1/J(2x-n) >=0 and <1/1 (x) ,1/J(4x-n»=0. By
extending this procedure, it may be shown that the remaining



RBE VOl. 9 / NÇl 1 1993 65

conditions in (13) are also satisfied. It should be pointed out
however, that (15) is not the only possible solution to guarantee
orthogonality.

For the case of the Haar function,
~(x) = 1, O s x < 1,

= O, otherwise,
clearly gives Co = c 1 = 1/V2 (see (14» and from (15),

I/J(x) 1,Osx<1/2
= -1, 1/2 s x < 1,

O, otherwise.

In the discussion so far, the conditions for suitable
scaling functions (~(x» and primary wa'(elets (I/J(x» have been
given. The Haar transform is the simplest example of such a
system, but the question remains whether others may be ~ound, or
indeed, if they existo Following the above paragraph, it may
however be stated, that if a reasonably well behaved ~ (x) is
discovered (which luckily is possible - see below), then the
corresponding I/J (x) also exists. In the following, the
coefficients c k will become the main focus of attention, since it
is they which are used in the discrete forward and inverse
transforms (and for this reason the transform is called discrete)
and furthermore, ~(x) and I/J(x) may be determined from them. This
will become clear by considering the transform algorithm - which
will be developed now.

DECOMPOSITION ANQ RECONSTRUCTION ALGORITHM

At dilation leveI m = O, c on = <f, ~On> and f o = L n con~On;

at the next leveI, m 1, C1k <f, ~lk> <fo, ~lk>
Lncon<~On, ~lk>' The latter inner product may be expanded as

IX)

21/2 J~ (2x- (n-2k) ) ~ (x) dx

h(n-2k)

where the h (n-2k) are the coeff icients Cn-2k of (14).
follows that

(16)

It then

(17)

This result is at the basis of the transform algorithm: the
transform coefficients at dilation lev~l m=l may be calculated by
discretely transforming those of leveI m=O, without the need to
again turn to the original continuous data. similarly,
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where

(18)

g(n-2k)

<Xl

2-112 J<I> (x-n) t/J (x/2-k) dx.

-<Xl

(19)

This can readily be extended to the following higher
dilation leveIs where it is clear that the same h(n) and g(n)
apply: considering (16),

<Xl

-<Xl

<Xl

2-112 J<I> (x-n) <I>(x/2-k) dx

and equivalently

<<I>Oo,<I>lk> = h(n-2k). (20)

(21)

The algorithm for the discrete wavelet transformation is
therefore given by

Lo c(m-llo h (n-2k)
I:o c(m-llo g(n-2k).

(22a)
(22b)

Thus the continuous data is only used at the lowest dilation
leveI (here called m=O) to obtain c Oo . From then on, alI
transforroations are carried out on the transform coefficients of
the previous leveI, the results being identical to those
that could be obtained by continuing to apply to continuous
transform to the original function. The importance of this
result in the practical use of the transform is self-evident.

The reconstruction (inverse transform) algorithm may be
found in a similar way: based on (8)
f m = I:k c(m+llk <I> (m+llk + ~ d(m+llk t/J (m+llk
and, according to (10), cmn = <fm,<I>mn>. Hence

c mn = I:k c(m+llk <<I>mn,<I>lm+llk> + I:k d 1m+llk <<I>mn,t/J(m+llk>
= I:k Clm+1 lk h(n-2k) + I:k dlm+llk g(n-2k) (23)

The coefficients c mo may be thus obtained from the c(m+lln
and d(m+lln of the next higher dilation leveI (m+1) , by
discretely filtering with the functions h(n-2k) and g(n-2k)
respectively. It should be noted that in the inverse transform,
the suroroation is with respect to k, whereas in the forward
transforro it was over n.
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d3

d4

c4

Fig. 3. The coefficients C and d (squared) corresponding to fig
2, vith dilation leveIs m=l to 4. To improve visualization, the
height of the bars is divided by 2m. The increase in the vidth of
the bars for the heigher leveIs of m indicates the corresponding
reduction in sampling rate.

The results of forward and inverse transformation are
illustrated in figo 2, based on the example of the Haar function.
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As already stated, figo 2 shows the signal and the reconstructed
versions at different leveIs of m. Fig. 3. shows the
coefficients c 4n used in the reconstruction at leveI m=4 (f4),
and the ~, m~4, successively incorporated to obtain the
remaining higher resolution signals.

Fig. 4 illustrates the transform ãlgorithm. Here, starting
with the N samples of CCn ' N/2 samples of C 1k are obtained, as
well as N/2 of d1k . The reduction in the number of samples in c
and d is the result of the translation of h(n-2k) and g(n-2k) by
2k. This is the practical result of the sampling frequency being
halved when the dilation is doubled, as was indicated earlier.
Fig. 3 also illustrates this point. It should be underlined,
that the sampling interval at leveI m+l is twice that at leveI m,
or equivalently, the sample c= is at the same point on the time-
axis as c(m+1ln/2. At the next stage of the transform, the N/2
samples of C 1k result in N/4 C 2k and N/4 d2k . This process may
be continued until finally only one value each of c and d is
obtained.

m=O

m=

m=2

m=3

BDDEJDDDEJ cO
~!rl~!rr!
1\ ti' 11 J J; ~I i~ /;

~I U JJ JJ
O O O O d1
O O O O c1
r l r, /

~I/ ~rlt
O O d2
o B c2
~ -/
': ./
~ff
o c3
o d3

Fig. 4. Schematic Diagram of the Wavelet transformo

For the reconstruction of the signaJ. (inverse transform),
the c's and d'S at dilation leveI m are combined to find the
C(..-l)k' and then, including the d(m-1lk' the c(m-2)k are
obtained. This process ~Y1be continued, until finally arriving
at the CCk . Thus the reconstruction algori thm requires the c I s
and d'S of the ultimate dilation leveI (m), together with the d's
of alI the lower leveIs m-i, O < i < m. The samples of the
signal at m=O are then identical to those of the original signal
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(This was confirmed for figo 2). The lower resolution versions
(m>O) in fig. 2 were reconstructed by neglecting successively
more of the d's: thus at m=l, the d1n were set to zero and at
m=2, d 1n = d 2n = O, etc.

It may easily be verified by considering figo 4, that the
number of coefficients necessary for complete signal
reconstruction is equal to N, the number of samples in cOn. This
holds true, whether or not the transformation is carried out up
to the ultimate dilation leveI possible, i.e when there is only
one coefficient each of c and d (at m=3 in figo 4). Each of the
transform coefficients (cmk and dmk) is formed through a weighted
sum of the samples COk and this may therefore be viewed as a set
of simultaneous linear equations. Furthermore, they are linearly
independent since the wavelets are orthogonal (and therefore may
not be obtained as a linear sum of each other). In the inverse
transform the equations are solved and evidently N equations
(Le. N transform coefficients) are required in order to solve
for the N samples C Ok . More than N coefficients would lead to
overdetermination and redundancy of information (or worse,
contradictory information), less would not allow a solution. It
should however be pointed out that when the wavelets involve more
than two samples (or the signal invo~ves an .odd number of
samples), the signal segment has to be zero-padded and hence the
number of transform coefficients is slightly larger than ~.

In order to reconstruct the continuous signal f (x) , the
continuous form of the transform (2) would be applied to the COk •
The signal thus reconstructed is accurate if f(x) forms part of
Vo, else it will be f o, the best mean-square approximation
through if' (x) at dilation m=O. However, the leveI m=O is an
arbitrary choice, and C-1k could be calculated by continuing to
apply the discrete inverse transform with the assumption that
f(x) E Vo, thus setting dok=O. In such a way discrete versions of
the signal with higher and higher resolution (in terms of sample
spacing, but without additional information content) can be
reconstructed. These discrete functions converge to the
continuous version fo, as the corresponding if'mn are reduced in
time-scale, becoming impulses in the limito

The Haar function may be used to illustrate the point: the
discrete versions (cmn , m<O) place more samples on each step, but
the basic step-width remains constant. The continuous signal may
be obtained at any stage by interpolation with the .rectangular
pulse (boxcar) function, whose size decreases with a progressive
redllction in dilation leveI. The equivalent operation for the
discrete Fourier transform is obtained when the spectrum is zero­
padded. This does not alter the signal spectrum (zero power
above the Nyquist frequency is part of the basic requirement for
aliasing not to occur) or increase the information content, but
does increase the number of samples obtained on inverse
transformation. Low-pass filtering either the original sampled
signal, or that obtained after spectral zero-padding, would lead
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to exactly the same continuous function.

The question arises, whether the COn can be considered
samples of the continuous signal f(x). The answer is clearly no,
not even if the signal forms part of the space Vo and therefore
is perfectly defined by the cOn' This' is evident from the
reconstruction formula, since ,(x) does not have zeros at the
location of the remaining samples, such that generally f (n)
I:kCOk' (n-k) ,;. COn ' In contrast, when dealing with the samples of
band-limted signals, the equivalent to ,(x) is the sinc function
sin(x)/x which does pass through zero at the location of adjacent
samples.

In most applications of signal processing, only sampled
signals, and not the original continuous versions, are available.
These samples might however be treated as COn and form the basis
for the application of the discrete wavelet transformo This is
permissible, since the independence of the COn leads to no
inherent restrictions on their value (other than finite energy,
which in practice is of little concern). In the reconstruction
of the conti~uous signals f(x) from these 'samples' it would of
course n'ot be justified to interpolate based on ,(x). Rather,
this should be carried out through the usual low-pass filter (or
the equivalent in the time-domain, the sinc-function).

It is interesting to observe that the signals in Vo are not
band-limited, since the ,(x) of finite support have infinite
bandwidth. In spite of this the signals are defined through a set
of coefficients COn at a finite sampling rate, when according to
the sampling theorem, the sampling rate would have to be
infinite. The explanation is of course that we are now not
dealing with samples of the signal.

CONDITIONS FOR THE DISCRETE WAVELET FUNCTIONS

Above the wavelet transform was developed based on the
continuous signals. It was shown that once the transition to the
discrete version was made, alI further transformations may be
carried out in the discrete domain. It was then seen that in
practice, the discrete transformation may start with the sampled
signal, such that alI computational work invol~s only h(n) and
g(n) and no longer ,(x) and I/J(x). The conditions for the
admissibility of ,(x) have been given and it was seen that when
such a ,(x) is chosen, I/J(x) follows «14b) and (15» as do h(n)
(16) and g(n) (19). The choice of wavelet may in fact commence
with the selection of h(n) (and g(n) by implication) - according
to conditions similar to those for the continuous functions.

Clearly for any reasonable transforUl I: h2(n) < 00 and
hence I: g2(n) < 00. Through forward and then inverse
transformation, the orthogonality conditions may be derived:
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CmJ = Lk h(j-2k) Ln h(n-2k) Cmn + Lk g(j-2k) Ln g(n-2k) Cmn

= Ln [Lk h(j-2k) h(n-2k) + Lk g(j-2k) g(n-2k)] Cmn
and therefore

Lk h(j-2k) h(n-2k) + Lk g(j-2k) g(n-2k) c5 (j-n)

By inverse and then forward transformation
CmJ = L n h(n-2j) Lk h(n-2k) Cmk + Ln h(n-2j) Lk g(n-2k) d..lk
it follows that

L n h(n-2k)h(n-2j)
L n g(n-2k)h(n-2j)

c5(j-k)

O, all j,k
(25a)
(25b)

underlining the equivalence between the discrete and continuous
versions of the wavelet basis. Energy preservation

Ln C~n = L n Cfm+lln + Ln dfm+lln

may thus be confirmed.

Consider the boxcar function f(x)=a
otherwise, then near x=O,

(26)

-N :s X < N O

ao ao

-'" -'"
as follows from (3) and ao = 2. Considering the discrete version
of the wavelet transform, c mk = c(m-lln Lnh(n-2k). Thus in the
region near the centre of f(x) (and hence generally),

(27)

From energy preservation (26), it is clear that Ln Cf,.-1In =
Ln c~ + Ln ~n. Now taking N to its limits such that all c mn

are equal and considering that c mn = v'2 c(m-1In and that the
sampling rate at dilation level m-1 is twice as high as at level
m, evidently ~ = O and consequently

Ln g(n) O. (28)

According to (15), (16) and (19),

g(n) = (-l)n h(l-n) (29)

which guarantees the orthonormality of g(n) and its orthogonality
to h(n). It should be stressed again that this is not a unique
solution (eg. time shifted versions will also work). It may
easily be verified that under these conditions (24) is also
satisfied. As a result of (28) and (29), Ln h(2n) = Ln h(2n+1) =
1/v'2, which furthermore guarantees that a smooth CC,.-1In leads to
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a smooth cmn •
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The derivation of the discrete orthogonal wavelet transform
is thus complete. A Pascal implementation of the forward and
inverse transform is given in the Appendix.

EXAMPLES OF DISCRETE ORTHOGONAL WAVELETS OF FINITE SUPPORT

Having given the necessary and sufficient conditions on h(n)
and g(n) for the discrete orthogonal wavelet transform, examples
of these functions can be given. These will be restricted to
those of finite support and in particular those of length 2
samples (the Haar function already cited), and the families of
length 4 an 6 samples respectively. There does not appear to
exist any general theory on how to obtain these discrete
functions, but it may readily be verified that the ones given
below satisfy the necessary conditions.

For the Haar function:

h(O) 1/'1'2,
g(O) = 1/'1'2

h(l) = 1/v'2
g(l) = -1/v'2.

(30a)
(30b)

The admissibility is confirmed as Lnh(n) = '1'2, Lnh2 (n) = 1 and
Lnh(n)h(n-2k) = O, k ~ o. These values are in accordance with
(16) and (19), and the continuous version of the Haar transform
given above.

For the wavelets of length 4 samples,

h(O)

h(l)
h(2)
h(3)

1/'1'2 V(V-1)/(v2+1)
1/'1'2 (l-v) / (v2+1)

1/v'2 (v+1) / (v2+1)
1/'1'2 V(V+1)/(v2+1)

(31a)
(31b)
(31c)
(31d)

alI other samples being zero. There exists thus a family of
wavelets, and their shape (i.e that of ~(x» varies quite
radically with the choice of the parameter v - as shown in figo 5
and 6. It is easily confirmed that the sum and sum-square
values of the samples satisfy the conditions given above. The
samples g(n) may be obtained as

g(n) = (-l)n h(3-n) (32)

which guarantees the orthogonality of h(n) and g(n) and
conveniently locates both functions in the same position on the
time-axis.

The discrete orthogonal wavelet of 6 samples will be defined
next. In ~his case, there are 6 unknowns (the h(n», 4
restrictions (the mean and mean-square values, and two for
orthogonality, see below). The function is therefore defined
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through the choice of two parameters (a and ~):
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h(O) (1/4V2)[(1+cosa+sina)(1-cos~-sin~)+2.sin~.cosa)]

h(l) (1/4V2)[(1-cosa+sina)(1+cos~-sin~)-2.sin~.cosa)]

h(2) (1/2V2)[l+cos(a-~)+sin(a-~)]

h(3) (1/2V2) [l+cos(a-~)-sin(a-~)]

h(4) 1/V2 - h(O) - h(2)
h(S) 1/V2 - h(l) - h(3) (33)

and

g(n) = (-l)nh(S-n), (34 )

again locating h(n) and g(n) in the same positions on the time­
axis. The orthogonality condition on h(n) now leads to two
equations:
h(0)h(2)+h(1)h(3)+h(2)h(4)+h(3)h(S) O
and
h(0)h(4) + h(l)h(S) = o.

Fig. 5. ~(x) and ~(x) for the wavelet with 4 samples and v=O.67.

It may be noted that if a = ~,

obtained and if sin(a-M = (1-v2 ) / (1+v2 )

samples (31) results, with h(4) = h(S) =
and h(2) = 1/V2 - h(O).

the Haar function is
the wavelet with 4

O, h(l) = 1/V2 - h(3)

Fig. 7 shows an example of a wavelet of six samples - one
that is relatively smooth.
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FINOING <PlJU ANO t/JlJU FROM h.!.nl.

Having defined h(i), the continuous functions <P(X) and t/J(x)
may be obtained, as has already been indicated. Let C On be the
transform coefficients at dilation level m = O of the function
<P (x). It is clear that due to the orthonormality of <P (x), and
since <p(x) is in the space Vo (by definition)
C On = 1, n=O,

= O, otherwise.
It also follows that for m < O, ~ = o. Thus c=, m < O can be
reconstructed by first applying the reconstruction formula (23)
to the impulse at level m=O (COn = e5 (n», and then recursively
to the result, setting all ~=O. As discussed above, the c..n
give a discrete approximation to the continuous function, which
improves as m is decreased and <Pmn approaches the impulse
function. Thus the shape of <p(x) progressively emerges with
repeated application of the reconstruction algorithm. It may be
shown that for h(n) of length M samples, the <P(x) converges to a
length of M-1, if it is considered that with each decrease in m,
the distance between samples is halved.

Fig. 6. <p(x) and t/J(x) for the wavelet with 4 samples and v=1.5.

The function t/J(x) may be obtained in a similar way.
However, now COn = O, and don = e5 (n) . Thus c-ln is obtained from
(23) by setting the first sum to zero. Now t/J(x) e Wo and thus in
V-l , 50 ~ O, m < O. Thus t/J(x) can be approximated by
recursively applying the reconstruction algorithm to the c=.
The difference between the reconstruction of <P(x) and t/J(x)
therefore lies only in the calculation of C_ln ' where in the
former case the C On = e5 (n), don = O, and in the latter ~ =
e5 (n), COn = o. From then on the procedures are identical, both
only employing the h(n). It may be noted that the magnitude of
the <P(x) and t/J(x) thus approximated decrease with each decreasing
level of m (and increase in number of samples), as follows from
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energy conservation (26). In order to maintain the amplitudes
over successive levels of m, the results should be multiplied by
v2 at each iteration. It is through this algorithm that figo 5,
6 and 7 were obtained (iterating 7 times). Fig. 8 shows the
reconstruction of a signal using the wavelet shown in figo 5.

Fig. 7. 4J(x) and t/J(x) for the wavelet of with 6 samples and
1X=1.15, (3=0.4.

FINAL COMMENTS

In the above, conditions for the admissibility of discrete
orthogonal wavelets have been derived and some such families
given. However, it is found that many of these 4J(x) (and hence
t/J(x» do not converge to 'nice' functions (see for example figo
6), but are very spiky with a noise-like appearance. These would
therefore probably not form a convenient basis for signal
modeling and data compression through the wavelet transform (see
the rather irregular reconstructions for m=3 and 4 in Fig. 8).
The so-called regularity conditions were derived by Daubechies
(1988) to select the more 'reasonable' functions out of the set
of permissible ones. Continuity criteria can be found by
considering the Fourier domain. These are beyond the scope of the
present work.

It should be pointed out that wavelet transforms have
certain disadvantages: one of particularinterest in the present
application to the analysis of Visual Evoked Potentials (VEPs),
is that they do not hold delay (latency) information in a very
obvious way. In this respect the DFT has advantages, since delay
simply results in a linear phase-trend, whose gradient is
proportional to the delay. With the wavelets here presented,
delay may lead to a rather complex redistribution of energy
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between the different transform leveIs.
to pre-process (align) the signals
confusing results.

It may thus be necessary
in order not to QPtain

~I

\~\~I~
~~~

Signol

m=O

m=l

m=2

m=3

m=4

Fig. 8.
figo 5.

A signal and its reconstruction using the wavelet of

~ig. 3 showed the transform of a relatively simples signal
(a s~ne-wave of varying frequency) and, as might have been
expected, the energy tends to move to higher dilation leveIs as
the frequency decreases. However, the behaviour in this respect
is somewhat erratic, as the transform coefficients depend also on
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the alignment of the wavelets with the oscillations of the signal
(see comments above). It may thus be stated that these wavelets
are rather sensitive to signal 'phase' and are therefore not a
simple alternative td power-spectral estimation. This may
however also be considered an advantage, since power-spectra can
be criticized for their lack of responsiveness to signal phase
and therefore signal morphology.

To what extend these wavelets do have a usefuI role in the
processing of biomedical signals will only become clear as we
gain more experience in their use on 'real data'. Some results
in this respect will be presented in a companion paper to follow.
It seems doubtful that wavelets will ever replace the Fourier
Transform but they do suggest some interesting new possibilities.

APPENDIX

Pascal listing of the forward and inverse transform algorithm.

const
max buffer length = 580 j{no. of samples in data block}
max-transform leveI = 7 j{max. m}
max=wavelet_sIze = 6 j{max. size of wavelet}

type
buffer t = array [ O •• max buffer length - 1 ] of real j
coefficient store = array [-O •• max transform leveI] of

buffer t -; --
coefficient type = array [ O •• max_wavelet_size - 1 ] of

real j -

procedure reconstruction filter
( var h : coefficient type
wavelet size : integer j

var c :-buffer_t );
{
Perform the inverse transform of coefficients 'c', using the
discrete wavelet 'h' of size 'wavelet size'.
The same routine may be used with 'g'-and 'd'.
}
var n, k : integer j

temp : buffer t j

start offset : integer
begin -

start_offset :=. - (wavelet_size div 2 - 1)
for n := O to max buffer length - 1 do

begin --
temp [n] := O ;
k := n div 2 ;
while ( k >= start_offset) and ( (n-2*k) < wavelet_size
do

begin
temp[n] := temp[n] + h[n-2*k]*c[k-start_offset] j

k := k - 1
end ;
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end i
c := temp

end

procedure decomposition filter
( var h : coefficient-type
wavelet size : integer i
var c :-buffer_t )i

CADERNO DE ENGENHARIA BIOM~DICA

g, wavelet size , ds[m]) i
h, wavelet=size , c_m ) i

{
Perform the forward transform of coefficients 'c', using the
discrete wavelet 'h' of size 'wavelet size'.
The same routine may be used with 'g,-to obtain 'd'.
}
var n, k : integer i

temp : buffer t i
start offset : integer
r : real i

begin
start offset := - (wavelet size div 2 - 1)
for k-:= O to max buffer length - 1 do

temp [k] := O i- -
for k := start offset to max_buffer_length div 2 - 1 do

begin -
r := O i
for n := k*2 to (k*2 + wavelet_size - 1 ) do

begin
if (n >= O) and (n < max buffer length) then

r := r + h[n-2*k]*c[n]; -
end i

temp [k-start offset] := r i
end i -

c := temp i
end

procedure block wavelet transform
( var signal : buffer-t i
var c m : buffer t i -
var ds : coefficlent store i
var h, 9 : coefficient type i
wavelet_size, max_m : Integer )i

{
Transform the signal 'signal' to 'max m' levels, using the 'h'
and 'g' of size 'wavelet size', and store the results in 'c m' (c
at level max m) and 'ds'-(the d's up to level max m)
} - -
var m : integer
begin

c m := signal
fõr m := 1 to max m do

begin
ds[m] := c m i
deco~positlon filter
decomposition-filter

end -
end
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procedure block inverse wavelet transform ----...-~.

( var c m : bUffer t ; var ds-: coefficient store
var h, g : coefficIent type i -
wavelet size, max m : Integer i
reconstruction leveIs : integer
var signal : bUffer_t )i

RBE VOl. 9 / N~ 1 1993

{
Inverse transform the results of 'block wavelet transform', using
only the highest 'reconstruction levels7 of d's~, i.e. if
reconstruction leveIs = max m, it performs complete
reconstruction~ if reconstruction leveIs = O, it only uses c m
and nane of the ds. However, the reconstruction is always
performed to the number of samples in the original data.
}
var m, i, leveIs reconstructed : integer i

temp : buffer t
begin

signal := c mi
leveIs reconstructed := O
for m:~ max m downto 1 do

begin
reconstruction filter ( h, wavelet size , signal )i
if leveIs reconstructed < reconstruction leveIs then

begin
temp := ds[m] i
reconstruction filter ( g, wavelet size , temp )i
for i := O to max buffer length - I do

signal[i] := signal[i]-+ temp[i] i
end i

leveIs reconstructed := leveIs reconstructed + 1
end -

end
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UMA INTRODUÇÃO À TRANSFORMADA ONDELETTE, DISCRETA E ORTOGONAL

por

David Martin Simpson

RESUMO -- A transformada ondelete ('wavelet') tem
recebido consideravel atenção como posslvel alternativa
(com certas vantagens) a transformadas mais tradicionais,
tais como a de Fourier ou de Cosseno, especialmente
quando aplicada a sinais transientes. No presente
trabalho, os conceitos básicos da transformada ondelete
são descritos e uma das famllias de ondeletes é então
focalizada: a discreta, ortogonal de suporte finito. A
base teórica é desenvolvida para transformação direta e
inversa bem como para seleção de ondeletes. O trabalho
visa explicar a técnica em termos acesslveis para
engenheiros, evitando os métodos matemáticos mais
complicados (e frequentemente desnecessários) geralmente
usados na sua descrição.
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