RBE - Caderno de Engenharia Biomédica, v. 12, n. 3, p. 131-141, out 1996 131
Edicéio Especial: Engenharia Biomédica na América Latina

A SIMULATED ANNEALING APPROACH TO LEFT VENTRICLE 3D
RECONSTRUCTION FROM TWO ANGIOGRAPHIC VIEWS

J. Toro' ,R. Medina' , M. Garreau® ,H. Carrasco’, D. Jugol

ABSTRACT -- In this paper, a simulated annealing approach is used to solve the left
ventricle, tridimensional reconstruction problem based on two angiographic views. The
algorithm works under the assumption of having parallel projections and a
homogeneous mixture of blood and contrast agent filling the ventricular cavity. Those
assumptions allow to decompose the original 3D object into a stack of bidimensional
slices, in order to simplify the reconstruction process. Each slice is modeled as a
bidimensional Markov-Gibbs random field and the reconstruction process is started
with an initial approximation, which is appropriately deformed by using a simulated
annealing optimization procedure in order to minimize an energy function that includes
projection compatibility and spatial regularity constraints. The results obtained by
reconstructing a 3D binary database of the ventricle from two synthesized projections,
as well as the reconstruction obtained from two orthogonal angiographic images show a
low reconstruction error and the shapes of the reconstructed slices are highly correlated
with the original database.

Key-words: 3D Reconstruction from Projections, Simulated Annealing, Markov
Random Field.

INTRODUCTION

Assessment of the ventricular function allows to determine several parameters defining the
physiological status of the ventricles. The estimation of those parameters is usually based on the
analysis of angiographic images previously digitized and processed in order to enhance their
information content. The analysis of the ventriculographic images allows to measure the ventricular
volume, the ejection fraction, the wall stress, the ventricular synergy and other important parameters
(Yang et alii, 1978). Many of these parameters are estimated by assuming an ellipsoidal
tridimensional model for the ventricle shape (Kennedy et alii, 1970). This restrictive assumption
could be released by the appropriate 3D reconstruction of the ventricle, in order to improve the
precision of the estimation. :
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The 3D ventricle shape reconstruction method described here is based on the work of Pellot et
alii (1994), about the 3D reconstruction of coronary sections. In our case, it has been necessary to
review some particular points in order to reconstruct the left ventricle shape from the information
provided by only two orthogonal angiographic views. This constraint is imposed by the image
acquisition technology that only considers mono-plane and bi-plane equipment. The reconstruction
problem as stated is difficult because of its ill-posed nature and the possibility of having an infinite
number of solutions fulfilling the given angiographic views. In order to reduce such indeterminacy,
the solution must be regularized by including some a priori information about the ventricle shape.

The proposed method considers the ventricle shape as a closed set O in the Euclidean space,
that is simply connected, bounded and can be constructed by stacking a set of bidimensional slices.
This model allows to describe the ventricle shape at any instant of the cardiac cycle including
several abnormal ventricle shapes as in the case of arteriosclerotic heart disease, or any other disease
characterized by asynergic movements or wall hypertrophy. Considering the assumption of parallel
projection geometry that implies placing the X-rays source at an infinite distance from the irradiated
object, the 3D reconstruction process can be managed as solving several bidimensional slice
reconstruction problems, where each slice O, is reconstructed from two densitometric profiles

taken from the angiographic views. This reconstruction process is aimed to obtain the interior and
contour region of the ventricle in each considered slice under the additional constraint of having a
homogeneous X-rays absorption coefficient in the ventricle in order to develop a binary
reconstruction. Several solutions have been proposed for solving this binary reconstruction problem
(Onnash, 1978) (Slump et alia, 1982), notwithstanding the existence of multiple solutions and the
strong assumptions about the geometry of the acquisition system require further research in order to
improve the results.

The proposed algorithm models the global and local spatial properties of the reconstructed
slice as a Markov Random Field (Sigelle et alia, 1992). Additionally the equivalence between the
Markov and Gibbs description is used (Besag, 1974) by writing the a priori probability of the
reconstructed slice based on an energy function that groups the addition of several potential
interaction functions, designed for penalizing the less probable configurations.

METHOD

Reconstruction slice model

Each ventricular slice O, is expressed as:
0,=0,u0, ' )

where O, is a connected open and bounded set that describes the interior region and d0, is the
contour region of the ventricle in each slice.

We work under the assumption that the contour &0, is a smooth and continue curve
derivable except in a finite number of points. Additionally, we assume the ventricle filled by a
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homogeneous mixture of blood and contrast agent, in this way the constant absorption coefficient of
the ventricle interior region, allows to consider each slice of the ventricle as a binary matrix where
each element can take the zero or one value depending if the element belongs or not to the ventricle.
The 2D reconstruction problem implies the searching for a 2D binary array of size N XN,,

denoted {xij} based on two 1D projection arrays f,(i) and fy(j) with N; and N, elements

respectively, corresponding to a pair of rows taken from the angiographic views. The binary array
{xij} must satisfy the given 1D projections:

N,
2% = fx (i) i=1,..,N,
2

and
N N,
_Z]fx(i)= Zlfym 3)
1= J= .

Due to the imperfections related to the image acquisition process, it is necessary to develop a
pre-processing stage for the two angiographic views, including logarithmic subtraction, contrast
enhancement, segmentation, alignment and densitometric equalization (Prause et alia, 1992)
between the two projections in order to satisfy the equation (3).

The Markov Random Field -- Each 2D reconstruction slice is modeled as an image
x= {x,-j }, represented by a matrix of size N; X N,, that corresponds to a realization of the random

field denoted by X, associated to a finite lattice:
L={isisN, 1< j<N,} @)

including a collection of N; X N, pixels or sites each of them placed at position (i, j). In this

lattice it is possible to define a neighborhood system v = {Vijl(i, Je L} where the neighborhood

Vij is defined as a set of pixels such that:

(i,j)e Vij and (k,l)e vy (i,j)evy, . )

In addition, one can consider a subset of L denoted as a clique ¢, that includes only one pixel
(i, j), or any other set of pixels that satisfy the following condition: (i, j) # (k,1), (i, j)ec, and
(k,1) € ¢ implies that (i, j) € Vij . The collection of all possible cliques in (L, V) is denoted C. The
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Random Field X is binary as x; € A={01} and Xii takes the 1 value if the pixel belongs to the

ventricle, and the 0 value otherwise for each pixel placed at (i, j) € L. The set including all possible

configuration for the slice is denoted Q = {X = {xij }‘xij eA, (i,j)e L} where each configuration

is a Markov Random Field realization in L (Geman et alia, 1984) (Pellot et alii, 1994).

According to the Hammersley-Clifford theorem (Besag, 1974), a Markov Random Field X
defined in (L, V), has a Gibbs distribution or equivalently, it is a Gibbs Random Field in relation to

the neighborhood system v if and only if its joint probability distribution is of the form:

Lpce
P(X =x)= %e{— rEo] 6)

this joint distribution is basically an exponential distribution, where T is a constant used in the
simulated annealing optimization procedure and E is the energy function that is estimated from
each realization of the random field X. The energy function E(x) is defined as:

E(x)= Y V.(x) ©)
ceC

where V,.(x) is the potential function associated with clique ¢, and Z is the partition function:

E(x)

Z=Ye T (8)
xeQ)

which can be considered as a normalization constant. The only constraint over the completely
arbitrary potential functions V.(x) is that they should be a function of pixel values included in

clique ¢ (Besag, 1974) (Besag, 1972) (Heitz, 1991).
Energy function

The energy function was designed in order to provide the minimum energy value for the ideal
reconstruction solution. This energy function includes several terms where each of them models a
different attribute of the reconstructed slice, in such a way that the solution is the best compromise
between terms of the energy function. The terms included are: the slice fidelity with respect to the

given projections E]Z , that can be estimated as the difference between the projection profiles fy (i)
and fy(j) of the current reconstruction slice z, and the given projection profiles denoted f, (i) and

fy(J). as follows:

1 Imax . 2 1 Jmax , 2
B = 2 [H0-60F v 3 [0t ®

Flnin J=Imin
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where the profile f, (i) is non-zero between i, and iy, and fy(j) is non-zero between j,.,

and j,y therefore Ai=i,, —i,. and Aj = jpae — jpin-

~In this case each difference is weighted with the appropriated coefficients Ai or 4Aj in order
to keep both terms in equation (9) equally important during the optimization process. The term Ef

corresponds to the internal energy of the reconstructed slice as it considers the slice contour smooth
and with only a small number of irregularities. This term estimates the interaction energy of pixels
included in a second order neighborhood as:

N; N. j+1
1
-3 38- 3 5 o4, 00
2 N
84 7 ( 1]_,_1 [2 71 g 12 .
where &(e) is the Kronecker delta function, which is equal to one if xfj = xfl L and equal to zero if

Z Z
X # Xy -

The last term E3Z in the energy function models the degree of similarity between adjacent

slices and can be expressed as the difference between the current solution for the reconstructed slice
and the optimal solution for the adjacent previously reconstructed slice. The spatial similarity can be
estimated as:

an

where x represents the pixel value at position (i, j) for the reconstruction slice z and x !is the

pixel value at position (i, j) for the previously reconstructed slice z —1.

The energy function is obtained as the linear combination of the previously described terms
and defines the Gibbs distribution used in the optimization process. The general form of this linear
combination is:

¢ =oE} + 0, Ef + yEf (12)

where ¢; are weighting coefficients whose values are selected according to the optimization
procedure.

Those coefficients values were empirically obtained by considering several typical slices taken
from a 3D heart binary database. The ¢ coefficient is kept constant during all annealing procedure

and its value is fixed as oy =10. The a, coefficient is gradually lowered at each temperature stage
k, in order to allow for the presence of small irregularities on the slice contour. A decreasing
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function expressed as &, = 099* o, was found as optimum, with an initial value o = 1. The g

coefficient is also gradually lowered in order to allow for differences between the current
reconstruction slice and the previously reconstructed slice. A decreasing function expressed as

o= 095* af3 was determined with the initial value o =1.

Algorithm implementation

The goal of the reconstruction process is the search for the most probable configuration
corresponding to the slice realization that minimizes the energy function. In order to obtain an
approximate solution for this problem, a simulated annealing algorithm is used.

The reconstruction process is developed on a slice basis considering as the input the rows of
the two orthogonal angiographic views of the ventricle. The algorithm includes two stages, in the
first stage, the optimal solution search, starts with an initial approximation for the reconstruction
slice. This approximation can be an elliptic section estimated from the given projections, a
previously reconstructed slice or an approximate reconstruction obtained by any other method.
During this stage, the initial temperature 7}, is estimated. As the temperature parameter T controls

the performance of simulated annealing algorithm, in our problem Tj, is fixed with a high value, in

this way at the beginning of the reconstruction process almost all transitions are accepted. The
heuristic rule for estimating the initial temperature value is based on Johnson et alii (1989), and it
relies on an acceptation coefficient A , defined as the ratio between the number of accepted and

proposed bad transitions that increase the energy function. In order to estimate the parameter, first a
value A; closeto 1 is chosen and then the average energy change AE? is obtained by considering
Ny + N, random bad transitions. The initial temperature parameter 7T is estimated by using the
following relation:

AEZ

TO E(_l) (13)

The second stage for the slice reconstruction correspond to the simulated annealing algorithm
in order to obtain the optimal solution. This solution is attained by progressive lowering of the
temperature parameter. This lowering ratio is an important parameter that determines the simulated
annealing execution time and the quality of results. In our case a lowering temperature function

T, = ngO is used, where g is the cooling constant that is heuristically fixed in 0.95 (0< g <1).

At each temperature stage k , new configurations for the reconstruction slice are generated, those
configurations are accepted or rejected according to the transition acceptation criteria in order to
optimize the energy function. The slice contour pixels are scanned on a random and without
replacement basis. This contour is considered as the union set of an internal contour with pixels
taking the 1 value and an external contour with pixels taking the O value. First a random scan for
pixels belonging to the inner contour is developed and the new value for the chosen. pixel, if
accepted for transition, is the binary complement of the current value. When all pixels in the inner
contour have been visited, an external contour is determined and its pixels are visited on the same
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random basis. The acceptation criteria is based on the comparison between the occurrence
probability of the current configuration, denoted as P(x,) and the probability of the new
configuration denoted P(x, ). The comparison between both probabilities is done by estimation of

the energy change given by:
AE? = E¥(x,)- E*(x,) (14)

If the enérgy change is negative, the new configuration is unconditionally accepted as
P(x,)> P(x,) otherwise the new configuration is accepted based on the probability value

P,.(AE?,T,) given by:

A
, B}
P"“(AEZ’Tk)=—Pg"_;=e k | (15)
a

This value is a probability threshold that defines when the positive change in the energy
function is accepted and it allows to avoid local minimums and to pursue the optimization process -
until attaining a possible global minimum. The procedure for acceptation implies the generation of a
random number p, in the interval [0,1] picked from a uniform probability distribution, therefore if

Pyce(AE*,T, ) > p, the transition is accepted, otherwise it is rejected.

The algorithm .s stopped when the number of accepted transitions is lower than 7% of the
internal contour pixels for a given temperature stage. The procedure is then repeated for another
slice until all slices of the tridimensional object have been reconstructed.

RESULTS
Slice reconstruction

The reconstruction method was first tested on isolated 2D slices without considering the
similarity term E_,f in the energy function. The original 2D slices were taken from a 3D binary
database obtained by segmenting and binary filling of a tomographic scanner (CT) 3D database of a
dog heart. The slice reconstruction was performed from row and column additions (projection
profiles) of the original binary slice. The reconstruction process was initialized with a slice taken
from the original 3D database that is four slices apart from the current reconstruction slice.

The reconstruction error was computed by using the relative error criteria between the original
slice x and the reconstructed slice #, defined as:
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; Zl|'rij - ,f‘-jl

ERROR%z—i,T———xIOO (16)

In Figure 1, the results for the reconstruction of several slices are shown. As the original
database is known, the reconstruction error can be estimated for each reconstructed slice. The
minimum reconstruction error for this database is 1.34% of the original slice. The parameters used
in the Simulated Annealing algorithm were A, = 002, o =10, x, = land o = 0.

ORIGINAL . ‘ . . . ~
RECONSTRUCTION . . . . . ~
134

ERROR % 4.35 2.44 1.55 1.54 3.06

Figure 1. Obtained results for the slice reconstruction. In the upper row the original
slices are shown, the reconstruction and the error are shown below.

3D reconstruction

For developing the 3D reconstruction, the energy model previously used for the slice
reconstruction case was extended for considering the adjacent previously reconstructed slice with

o =1. As initial reconstruction, an ellipse estimated from the given profiles is used for the first
-0

reconstructed slice, then the previously reconstructed slice is used as initial solution.

In Figure 2, the 3D reconstruction of the binary 3D database for the dog heart is shown, where
one can appreciate both the reconstructed database and the original database visualized from the
same viewpoint for two different views. In this case the reconstruction error is 5.5%. This error was
estimated by using a 3D extension of equation (16). ‘

In Figure 3, a 3D reconstructed object from two real and pre-processed ventricular
angiographic views is shown. In figure 3a and 3b one can see the ventricular angiographic views
LAO 60° and RAO 30°, respectively after logarithmic subtraction, median filtering, segmentation
and densitometric equalization (Prause et alia, 1992). In figure 3c and 3d the binary 3D
reconstructed object is shown, visualized from a similar viewpoint as the original angiographic
views. In this case, even when the tridimensional reconstruction error cannot be estimated, we can
see a good degree of match between the synthesized projections of the reconstructed object and the
original angiographic projections with an error as low as 7%.
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(a) (b) () (d)

Figure 2. Reconstruction for the 3D binary database of the dog heart. (a) and (c) two
orthogonal views of the original 3D binary database, (b) and (d) two orthogonal views
for the 3D binary reconstructed object.

(a) (b) (c) (d)

Figure 3. Tridimensional binary reconstruction from two orthogonal ventricle
angiographic views: (a) and (b) left ventricle angiographic views LAO 60° and RAO
30°, (¢) and (d) two views for the binary reconstructed object.

CONCLUSIONS

We have presented a Markov model based method for the binary 3D reconstruction of the
ventricle shape from two angiographic views. The proposed algorithm works under the assumption
of having a parallel projection geometry and a homogeneous mixture of blood and contrast agent.
The first assumption is approximately valid as long as the input projections are corrected according
to a magnification factor derived from the acquisition geometry. For the second assumption to be
valid, the contrast agent must be injected at the right velocity and it is also recommended to average
several projection frames. When this assumption is not valid, the reconstruction error is important
as the shape appears deformed or with holes even when the actual ventricular shape is more regular.
Any other noise or residual error avoiding the fulfilling of the equation (3) is attenuated according to
the desintometric equalization procedure. This preprocessing stage upgrades the input data and
makes the reconstruction process a feasible task even though further research is necessary in order
to improve the projection data quality.

The probabilistic approach associated to the proposed method, allows to adequately solve the
ambiguity related to the reconstruction problem. The results obtained with a binary 3D database
show a high degree of correlation with the original database. The low reconstruction error obtained
in this experiment shows that the algorithm is able to approach the optimal solution that matches the
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real shape of the 3D object. When the reconstruction is performed from two real angiographic views
the comparison of these views with the synthesized views obtained from the reconstructed object
gives a low error value. The reconstructed tridimensonal object would match the actual ventricular
shape as long as the initial solution has the right spatial orientation and the input projections are
appropriately preprocessed in order to fulfill the required constrains. The reconstruction procedure
is flexible for allowing the modification of the energy function in order to include additional factors
that could intervene in the reconstruction process or for releasing some restrictive constraints as the
paraliel projection.
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